
Graph-Grammar Based Completion and
Transformation of SDL/UML-Diagrams

Position Paper

Ulrich A. Nickel, Robert Wagner

University of Paderborn
Warburger Straße 100
D-33098 Paderborn

Germany
[duke, wag25]@uni-paderborn.de

1 Introduction

In the last years the Unified Modelling Language has become more and more popular. It
has been successfully applied in many application domains. Thus, many effort is put into
the extension of the UML in order to make it applicable in formerly untypical domains.
One example is the development of UML-RT [SGW94]. UML-RT extents the UML by
adding the possibility of defining the communication structure of a distributed system. Un-
fortunately, it lacks of the definition of a precise semantics. Moreover, often there are other
graphical specification techniques which are commonly used. In the domain of communi-
cation engineering, the Specification and Description Language (SDL) [SDL96] has
emerged to a standard. Additionally, the semantics of SDL is formally defined.

At our department, we are working on a project which aims at the development of a seam-
lessly integrated graphical language for the specification of distributed production control
systems. We employ SDL for the specification of the overall communication structure of
the system. Whereas the modelling of complex object structures is a typical field of appli-
cation for the UML. Therefore, we developed a graphical language, which uses SDL block
diagrams, UML class diagrams, and UML behaviour diagrams like collaboration dia-
grams, activity diagrams, and statecharts [KNNZ00].

In a first step, the engineer models the topology of the system. This includes the identifi-
cation of the participating processes and the definition of the communication channels and
all kinds of interchanged signals. In a second step, an initial class diagram is automatically
generated out of the SDL block diagram which can now be refined. Additional steps follow
until the structure and the behaviour of the system are completely defined.

One of the major problems of such an approach is that there are several ways of mapping
one diagram to another. In many case tools the automatic generation is hard coded and can-
not be changed, if necessary. Thus, we developed a flexible transformation mechanism
which is based on graph-grammars. Thereby, we can formally define the mapping between
the different kinds of diagrams, which also allows the automatic checking of consistency.

2 Example

As an example we use aServiceMachine system illustrated in Figure1. A ServiceMachine
system offers services to a number of clients. First, each client must open a session by
sending theLogin signal to theMonitor process. TheMonitor process exists from initiali-
zation time. TheMonitor process creates a new Service process for each user which has
opened a session. Also, a valid communication path between the createdService process
and the client is established. After the reception of theLoginack signal, the user can ask
for the service with the signalRequest. When a user terminates a session with the signal
Logout, theService process also terminates and informs theMonitor process.

The mapping of theServiceMachine system to UML is illustrated in Figure2. Basically,
each process is mapped to an active class, e.g. processMonitor is mapped to the classMon-
itor and processService is mapped to the classService. Additionally, each class capable of
receiving a special signal implements a method named equal to the signal. Communication
channels and signalroutes form distinct paths, which are transformed to associations be-
tween the communicating process classes.

TheEnvironment class represents the user and handles incoming and outgoing signals ad-
dressed to theServiceMachine system. In contrast, theServiceMachine class is responsible
for system initialization and process management. This comprises creation and termina-
tion of processes and the validation of the maximum number of process instances in the

Figure 1, SDL specification of the ServiceMachine system

Monitor (1,1)

Service (0,)

block Server

system ServiceMachine

C2

C1 R1

R2

R3

Loginack ,
Result

Logout,
Request

Login

Terminate

Figure 2, UML class diagram of the transformed ServiceMachine example

Environment

loginack()
result()

Monitor

login()
terminate()

Service

logout()
request()

monitor
envservice env

servicemonitor

0..1

1 1

0..10..1 n

ServiceMachine

system. This way we guarantee the synchronous semantic of process creation defined in
SDL

Since our integrated development environment is capable of editing SDL and UML dia-
grams [KNNZ00, NNZ00, NZ99], we considered to use story-diagrams to specify the
transformation between these two kinds of diagrams. From this story-diagram specifica-
tion, we will generate Java source code, which can be integrated in the development envi-
ronment and executed on demand. This way we achieve an automated mapping from SDL
block diagrams to UML class diagrams. Note that both the specification and the code gen-
eration has to be done only once.

3 Graph-Grammar Based Transformations

The specification of changes to application specific object-structures is a well known ap-
plication area for graph grammars [Roz97]. A graph rewrite rule describes the changes to
an object-structure by a pair of before and after snapshots. The before snapshot specifies
which part of the object-structure should be changed and the after snapshot specifies how
it should look like afterwards, without taking care of how this changes are achieved.

While graph grammars are appropriate for the specification of object-structure modifica-
tion, they lack appropriate means for the specification of control flows.

To overcome this problem we introduced UML activity diagram as control flow notation
for graph rewrite rules, cf. [JZ98, FNTZ98]. In order to facilitate the use of graph rewrite
rules for object-oriented designers and programmers, we additionally adapted UML col-
laboration diagrams as a notation for object-structure rewrite rules. For this combination
of activity diagrams and collaboration diagrams we use the namestory-diagrams.

We implemented a case tool called Fujaba1, which uses an SDL/UML abstract syntax
graph (ASG). A part of the ASG is presented in Figure3. For more details about our inte-
grated meta model of SDL/UML see [KNNZ00].

1 From UML to Java and Back Again. See http://www.fujaba.de for further information.

Figure 3, SDL and UML Metamodel used in Fujaba

DiagramItem

subclass
Diagram

Project

UMLClassDiagram

UMLClass UMLGeneralization

SDLDiagram

superclass
diags

items

SDLConnectable

SDLBlock SDLProcess

SDLSystem

connectables

In our SDL model, blocks and processes are treated as own subdiagrams. Thus, both model
elements,SDLBlock andSDLProcess, inherit all properties fromSDLConnectable, which
is a kind ofSDLDiagram. Each top level system is a kind of block and therefore inherits
from SDLBlock. EachSDLBlock can hold via theconnectables association either further
subblocks or processes, but not both.

With some knowledge about the object-structure used in Fujaba, we can specify the trans-
formation by using story-diagrams. Figure4 illustrates a sample transformation of a SDL
system to UML classes. Because of lack of space, the transformation of paths and signals
is not demonstrated.

In the first activity, the current project is retrieved and stored in the local variableproject.
This is achieved by a simple call toUMLProject.get (). In the next activity, a new UML-
ClassDiagram nodediagram named equal toSDLSystem diagram is created (shown by the
’+++++’ annotation and the assertionname=system.getName()) and a link between the
project and the createdUMLClassDiagram node is inserted. In the same manner the class-
esEnvClass andSystemClass are created

Figure 4, Story-diagram for the transformation of SDL processes to UML classes

transform (SDLSystem system)

UMLProject project = UMLProject.get ()

project

diagram:UMLClassDiagram

name =system.getName()

EnvClass:UMLClass

name =“Environment“

SystemClass:UMLClass

name =system.getName()

+++++

+++++
diags

+++++

items
+++++

items
+++++

system

process:SDLProcess

path_expr

diagram

cls:UMLClass

name =process.getName()

[each time]

[end]

+++++

items
+++++

+++++

Next, the flow changes to the next activity. In this activity, a path expressionpath_expr is
used to find all nodes of typeSDLProcess. For each process found, the transition annotated
with [each_time] is executed. There, a new UMLClass node is created and receives the
same name as the consideredSDLProcess node. After successful creation, the control is
given back to the path expression and the next SDLProcess node is being searched for. If
all SDLProcess nodes have been considered, the stop activity is reached and the (partial)
transformation is complete.

4 Conclusions and Future Work

In this position paper, we presented a graph-grammar based approach for the automatic
completion and transformation of SDL and UML diagrams.

Currently, we implement these concepts in Fujaba. This case tool has been developed at
our department since November 1997. It supports the described parts of SDL and UML
and is able to generate executable Java-code.

As future work, we plan to develop a system for the intelligent management of consistency
rules. The system will take into account that some consistency checks depend on each oth-
er. Moreover, it will allow the user to classify inconsistencies as recommendation or po-
tential inconsistency, for example.

5 References

[FNTZ98] T. Fustier, J.Niere, L.Torunski, and A.Zündorf. Story Diagrams: A new Graph Rewrite Lan-
guage based on the Unified Modeling Language. In G.Engels and G.Rozenberg, editors,Proc.
of the 6

th
 Int. Workshop on Theory and Application of Graph Transformation (TAGT), Pader-

born, Germany. Springer Verlag, 1998.

[JZ98] J.H. Jahnke and A.Zündorf. Specification and Implementation of a Distributed Planning and In-
formation System for Courses based on Story Driven Modeling. InProc. of 9

th
 International

Workshop on Software Specification and Design, Ise-Shima, Japan, pages 77–86. IEEE Compu-
ter Society Press, 1998.

[KNNZ00] H.J. Köhler, U.Nickel, J.Niere, and A.Zündorf. Integrating UML Diagrams for Production
Control Systems. InProc. of the 22

th
 Int. Conf. on Software Engineering (ICSE), Limerick, Ir-

land. ACM Press, 2000.

[NNZ00] U. Nickel, J.Niere, and A.Zündorf. Tool demonstration: The FUJABA environment. InProc. of
the 22

th
 Int. Conf. on Software Engineering (ICSE), Limerick, Irland. ACM Press, 2000.

[NZ99] J.Niere and A.Zündorf. Using Fujaba for the Development of Production Control Systems. In
Proc. of Int. Workshop and Symposium on Applications Of Graph Transformations With Indus-
trial Relevance (AGTIVE), Kerkrade, The Netherlands, LNCS. Springer Verlag, 1999.

[Roz97] G. Rozenberg, editor.Handbook of Graph Grammars and Computing by Graph Transformation.
World Scientific, Singapore, 1997.

[SDL96] International Telecommunication Union (ITU), Geneva.ITU-T Recommendation Z.100: Speci-
fication and Description Language (SDL), 1994 + Addendum 1996.

[SGW94] B. Selic, G.Gullekson, and P.Ward.Real-Time Object Oriented Modeling. WILEY, 1994.

