MML and the Metamodel Architecture

José Álvarez, Universidad de Málaga, Spain

 Andy Evans, University of York, UK

Paul Sammut, University of York, UK

contact: pauls@cs.york.ac.uk

Abstract: The Meta-Modelling Language is a static object-oriented modelling language whose focus is the declarative definition of languages. It aims to enable the UML metamodel to be precisely defined, and to enable UML to evolve into a family of languages. This paper argues that although MML takes a metamodelling approach to language definition, it cannot be described as strict metamodelling. This has significant implications on the nature of the metamodel architecture it supports, yet without contravening the OMG’s requirements for the UML 2.0 infrastructure. In particular it supports a rich generic nested architecture as opposed to the linear architecture that strict metamodelling imposes. In this nested architecture, the transformation between the representation of any model at one metalevel and its representation in the metalevel below can be described by an information preserving one-to-one mapping. This mapping provides the basis for a powerful area of functionality that any potential metamodelling tool should look to exploit.

1. Introduction

The Unified Modeling Language (UML) has been rapidly accepted as a standard notation for modelling object-oriented software systems. However, the speed at which UML has developed has led to some issues, particularly regarding its customisability and the precision of its semantics [k99]. UML is therefore evolving, with an impending revision (UML 2.0 [uml2wg]) seeking to resolve these and other issues.

As it currently stands, UML is a monolithic language with little provision for customisability. Any new features would need to be added to the single body of language, leading to an increasingly unwieldy language definition as well as potential conflicts. An alternative approach (which the OMG has set as a mandatory requirement for UML 2.0 [omg00]) allows the language to naturally evolve into a family of distinct dialects called ‘profiles’ that build upon a core kernel language. Each profile would have its own semantics (compatible with the kernel language) specific to the requirements of its domain.

The semantics issue concerns the fact that the current specification for UML (version 1.3) [omg99] uses natural language to define its semantics. Thus there is no formal definition against which tools can be checked for conformance. A precise semantics is essential for compliance checking and interoperability of tools.

Another key requirement for UML 2.0 is that it should be rigorously aligned with the OMG four-layer metamodel architecture [omg00]. In this architecture, a model at one layer is used to specify models in the layer below. In turn a model at one layer can be seen to be an ‘instance’ of some model in the layer above. The four layers are the meta-metamodel layer (M3), the metamodel layer (M2), the user model layer (M1) and the user object layer (M0). The UML metamodel (the definition of UML) sits at the M2 layer, and as such it should be able to be described as an instance of some language meta-metamodel at the M3 level. Although the relationship between UML and MOF (the OMG’s standard M3 language for metamodelling) loosely approximates this [omg99], the lack of a precise formal UML metamodel severely limits the potential value of such a relationship.

In line with these key requirements for UML 2.0, the Precise UML group [puml] have proposed ‘rearchitecting UML as a family of languages using a precise object-oriented metamodelling approach’ [bccek00]. The foundation of their proposal is the Meta-Modelling Facility, which comprises the Meta-Modelling Language (MML), which is an alternative M3 layer language for describing modelling languages such as UML, and a tool (MMT) that implements it.

Whilst MML takes a metamodelling approach, it cannot be described as ‘strict’ metamodelling. This paper outlines the implications that this has on the four-layer metamodel architecture, and offers a modified form of this architecture. It also argues that when viewed in this modified architecture, any model can be represented at a number of different metalevels, and that a precise definition can be given to the transformation of a model between those metalevels. This transformational mapping should be a key feature of any metamodelling tool.

2. The Meta-Modelling Language

MML is a ‘static OO modelling language that aims to be small, meta-circular and as consistent as possible with UML 1.3’ [ceks00]. The MML metamodel partitions the fundamental components of language definition into separate packages. It makes two key orthogonal distinctions [bccek00]: between ‘model’ and ‘instance’, and between ‘syntax’ and ‘concepts’. Models describe valid expressions of a language (such as a UML ‘class’), whereas instances represent situations that models denote (such as a UML ‘object’). Concepts are the logical elements of a language (such as a class or object), and (concrete) syntax refers to the representation of those concepts often in a textual or graphical form (for example the elements of a class diagram or XML code). MML also defines appropriate mappings between these various language components, in particular a semantic mapping between the model and instance concepts, and mappings between the syntax and concepts of both the model and instance components.

The MML metamodel defines the minimum number of concepts needed to define itself, and wherever possible uses the existing syntax and concepts of UML 1.3. This meta-circularity eliminates the need for another language to describe MML, thus closing the language definition loop. The clean separation of language components and the mappings between them is fundamental to the coherence and readability of the MML metamodel.

The key extensibility mechanism in MML that provides the means of realising UML as a family of languages is the notion of package specialisation based on that of Catalysis [dw98]. In the Catalysis approach, packages may be specialised in the same way as classes; all the contents of the parent package are inherited by the child package, where they can themselves be specialised. This allows the definition of language components to be developed incrementally over a number of packages [ceks00].

The architecture of the MML metamodel is founded on the separation of language components and the notion of package specialisation described above. The metamodel is split into a number of key profile packages, each of which describe a fundamental aspect of modelling languages, and which are combined through an inheritance hierarchy to give the complete MML definition (Fig. 1(a) adapted from [bccek00]). In turn, each of the profile packages shares the same framework of subpackages as depicted in Fig. 1(b) (adapted from [bccek00]).

[image: image1.wmf]concepts

syntax2concepts

syntax

model

concepts

syntax2concepts

syntax

instance

semantics

«

profile

»

associations

reflection

model

management

constraints

static

core

datatypes

methods

mml

 (a) Profile packages (b) Profile framework

Fig. 1 The MML Architecture

These subpackages represent the basic language components and the appropriate mappings between them, and contain modelling constructs such as classes and associations (by way of illustration, a simplified form of the static core profile is depicted in Fig. 2). Well-formedness rules are realised by applying OCL constraints to those constructs, for example, circular inheritance is prohibited with the constraint:

context Classifier inv:

 not self.allParents -> includes(self)
A key idea to grasp for the discussion that follows in Section 3 is that MML serves two distinct functions: it is both a metamodelling language (such that the UML metamodel instantiates the MML metamodel) and a kernel language (it defines a subset of elements needed in the UML metamodel). Ultimately then, the aim is for the UML 2.0 metamodel to be both a specialisation and instance of the MML metamodel.

[image: image2.wmf]Instance

Classifier

1

0..*

of

instances

Class

Attribute

name : String

1

0..*

Instance

Slot

name : String

1

1

Object

1

0..*

attributes

slots

value

1

0..*

1

0..*

0..*

1

1

1

Classifier

name : String

isAbstract : Boolean

1

1

type

1

1

0..*

0..*

parents

0..*

0..*

 (a) model.concepts package (b) instance.concepts package (c) semantics package

Fig. 2 Simplified staticCore Profile

3. Strict Metamodelling and the Four-Layer Architecture

In a strict metamodelling architecture, every element of a model must be an instance of exactly one element of a model in the immediate next metalevel up [ak00]. As MML stands, it satisfies the ‘exactly one’ criterion, but every element does not instantiate an element from the immediate next metalevel up.

This is illustrated in Fig. 3 below. The concepts in the model.concepts packages (e.g. Class) and the concepts in the instance.concepts packages (e.g. Object) are all in the same metalevel (M3) since they are all part of MML. In line with the strict metamodelling mandate, instantiations of elements from the model.concepts packages belong to the metalevel below (M2) – these will be the elements that form the UML metamodel. However, instantiations of elements from the instance.concepts packages belong to the metalevel below that (M1), since these will form models that must satisfy the languages defined at the M2 level.

[image: image3.wmf]model.concepts

instance

.concepts

Meta

-

level M3 (MML)

Meta

-

level

M2

(

UML)

Meta

-

level

M1

(

user model)

instantiates

instantiates

Fig. 3 Instantiation of the MML Metamodel

In fact, since UML extends MML (through specialisation), this pattern is repeated for the relationship between M2, M1 and M0. So the Four-Layer Metamodel Architecture does not in fact resemble the linear hierarchy shown in Fig. 4(a) but the nested structure shown in Fig. 4(b). If Fig. 4(a) was the true representation, any metalevel could only describe elements from the metalevel immediately below it; for example MML (level M3) could describe elements from the UML metamodel (M2) but not elements from user models (M1). In the nested architecture however, a model can describe elements from every metalevel below it. This is a very powerful feature since it means that if a tool implements the MML metamodel, then it can not only be used to define languages such as UML, but user models and objects as well. How this is done is the subject of subsequent sections.

[image: image4.wmf]M3

M2

M1

M0

M3

M2

M1

M0

M'

0

M'

1

M'

2

M'

3

M'

4

 (a) Linear 4-layer (b) Nested 4-layer (c) Nested Generic

Fig. 4 Different Metamodel Architectures

Theoretically, the nested structure of the metamodel architecture (according to MML) is not confined to four levels; it could be applied at any number of levels, as depicted in Fig. 4(c). In effect, the four-level metamodel architecture is a specialisation of this generic nested architecture.

In fact, the fundamental metalevel of this architecture is not the bottom level as suggested by the OMG metalevel ‘M0’, but the top level, since only the top level is represented by classifiers (e.g. classes and packages) – all other metalevels are represented by instances. An alternative notation for the levels of the metamodel architecture (M´1 etc.) is introduced in Fig. 4(c) to emphasise this, and also to distinguish these levels from the four OMG metalevels.

This nested metamodel architecture might be seen as being at odds with the requirements set out by the OMG for the UML 2.0. However, the UML 2.0 Infrastructure RFP [omg00] states:

Proposals shall specify the UML metamodel in a manner that is strictly aligned with the MOF meta-metamodel by conformance to a 4-layer metamodel architecture pattern. Stated otherwise every UML metamodel element must be an instance of exactly one MOF meta-metamodel element.

It should be noted that this does not specify a strict metamodel architecture, and every UML metamodel element is intended to be an instance of exactly one MML meta-metamodel element (where an MML meta-metamodel element is equivalent to a MOF meta-metamodel element). This paper therefore argues that the nested metamodel architecture outlined in this section fulfils the infrastructure requirements.

4. Mapping Between Metalevels

A key aspect of the nested metamodel architecture described above is that any model can be represented by another model at a metalevel below it without losing any information. The relationship between these two models can be described by a one-to-one information preserving mapping (arbitrarily referred to as ‘G’), as depicted in Fig. 5. Now as described in Section 2, MML makes a fundamental distinction between model concepts and instance concepts. However, any model element can in fact be thought of as an instance element (for example, a class can always be thought of as an instance of the metaclass Class), and these two representations of the same entity are related by the mapping G. This section illustrates how the crucial notion of meta-instantiation can be modelled in the nested metamodel architecture by repeated application of the G mapping to a simple model.

[image: image5.wmf]Model at M

'

n

Model at M

'

n-1

G

Fig. 5 Mapping Between Metalevels

 In the model depicted in Fig. 6(a) below, there is a single class Dog, and a single object fido which instantiates Dog. Because Dog is a class, it must belong to metalevel M´0 (see Fig. 2), and because fido instantiates it, it belongs to M´1. Fig. 6(b) emphasises the position of these elements within the metamodel architecture.

[image: image6.wmf]Dog

fido :

Dog

instantiates

 [image: image7.wmf]M'

0

M'

1

Dog

fido :

Dog

 (a) The model (b) Position in Metamodel Architecture

Fig. 6 Dog and fido at Metalevels M´0 and M´1

This is the natural intuitive way to think of these elements, yet it is not the only way. Saying that Dog is a class and that fido is an object, is equivalent to saying that Dog instantiates the metaclass Class and that fido instantiates the metaclass Object, the metaclasses being defined in the UML metamodel. Thus the same information can be represented as shown in Fig. 7(a). Dog now belongs to the M´1 level and fido to the M´2 level (see Fig. 7(b)).

[image: image8.wmf]fido :

Object

Dog :

Class

instances

of

 [image: image9.wmf]M'

0

M'

1

M'

2

Dog :

Class

fido :

Object

Class

Object

 (a) The model (b) Position in Metamodel Architecture

Fig. 7 Dog and fido at Metalevels M´1 and M´2

There is a key relationship between the models depicted in Fig. 6(a) and Fig. 7(a). Both describe the same information, but at different metalevels. If a model is described to be at metalevel M´n when it contains any elements at metalevel M´n and below (i.e. the model in Fig. 4(a) is at metalevel M´1 because it contains elements at levels M´1 and M´2), then there is a one-to-one information preserving mapping (G) between the representation of a model at one metalevel and its representation in the metalevel below it (see Fig. 5).

Thus for a model X:

X(M´n).G = X(M´n-1) Equation (1)
The mapping between a model and its representation two metalevels below is given as:

X(M´n).G.G = X(M´n-2) Equation (2)
And in order to translate to a metalevel up:

X(M´n).G-1 = X(M´n+1) Equation (3)
Note however that any model that contains classifiers (i.e. elements at level M´0) cannot be mapped to higher metalevel.

The model in Fig. 6(a) can therefore be represented not just at the metalevel immediately below it (Fig. 7(a)), but also at the metalevel below that, as depicted in Fig. 8(a). It should be noted that Dog was represented first as a class, then as a Class object, and finally as an Object object. The UML metaclasses Class and Object are now represented at the M´1 level, and the MML metaclasses Class and Object are represented at the M´0 level. It can be seen that as the representation of a model descends the metalevels, the model representation increases in size and complexity, but nevertheless it can theoretically be represented at any metalevel down.

[image: image10.wmf]fido :

Object

Dog :

Object

Class :

Class

Object :

Class

of_ :

Attribute

instances

: Slot

of_ :

Attribute

instances_ :

Attribute

value

value

instances

of

type

attributes

instances

of

slots

attributes

slots

type

 [image: image11.wmf]M'

0

M'

1

M'

2

M'

3

Class

Object

Class :

Class

Object :

Class

Dog :

Object

fido :

Object

 (a) The model (b) Position in Metamodel Architecture

Fig. 8 Dog and fido at Metalevels M´2 and M´3

There are some interesting points to note regarding reflection and instantiation when looking at a model such as this. In the model depicted in Fig. 8, fido can be thought of as an instance of both Dog and Object, but if (as MML suggests) an object can only be ‘of’ a single class, how can these two notions of instantiation be modelled? The crucial idea is that whenever a query is made on a model (such as ‘what is fido.of?’), that query has an associated metalevel as well as the model elements themselves. This is in contrast with current thinking that queries can only be made about a model from the top metalevel (M´0). If the ‘fido.of’ query is applied at the M´0 level, the answer is returned as Object. However, the ‘fido.of = Dog’ relationship is also modelled, but at the M´1 level. Thus if the mapping G is applied to the query ‘fido.of’ itself, the result would be the Dog object. The G mapping can similarly be applied to any operation, whether side effect free or not.

An implementation of the G mapping would be a powerful feature for any tool. One use concerns the multiple representations of a model within a modelling tool. There is no reason why the metalevel most appropriate for visualising a model is the metalevel most appropriate for storing it (just as numbers in different bases are appropriate for humans and computers). The Dog and fido model from Section 4 is in its most comprehensible form in Fig. 6(a), but it is probably preferable to represent everything as an object within the tool as in Fig. 7(a). A model could thus be stored at one metalevel but visualised at another. This is in fact what both Rational Rose and MMT (the tool that implements MML) do already – model elements that are entered in a tool as a classes are actually represented as Class objects. Implicit in these tools is the functionality to not only map concepts to (concrete) syntax, but also to map between one metalevel and another.

Another potential use of G would be the wholesale transformation of metamodels. Once the metamodel for a language such as UML or a profile has been proven to be MML compliant, it can be translated up from the M´1 to the M´0 level by applying G-1. In its translated form, user models would sit at the M´1 level and user objects would sit at the M´2 level (so fido.of would now return Dog rather than Object). The metamodel would now be in a form suitable for conformance checking of any tools that would claim to implement it.

5. Conclusion

The Meta-Modelling Language (MML) is a static object-oriented modelling language whose focus is the declarative definition of other languages such as UML. MML takes a metamodelling approach to defining languages, in line with the OMG’s requirement that UML 2.0 must be aligned with their 4-layer metamodel architecture. However, the architecture supported by MML cannot be described as a strict metamodel architecture, since not all elements instantiate elements from the immediate metalevel up. Instead, MML supports a powerful nested metamodel architecture, which this paper argues does not contravene the mandatory requirements for UML 2.0.

A key aspect of this architecture is that a model can be represented at any metalevel. The transformation between the representation of any model at one metalevel and its representation at the metalevel below it can be described by an information preserving one-to-one mapping (G). This mapping has at least three potential uses:

· to translate queries and manipulations on models to any metalevel;

· to translate representations of models ‘on the fly’ to a metalevel most appropriate for visualising them (e.g. a Dog object is visualised as a Dog class);

· to translate a language metamodel from the M´1 level to the M´0 level resulting in a usable specification for the language that can be used for conformance checking of tools.

This mapping is so fundamental to MML that it should be brought out explicitly. It should not be part of MML, rather it should be a separate part of the Meta-Modeling Facility, something that defines some core functionality for any tool that is MML compliant.

References

	[ak00]
	Atkinson C., Kühne T.: Strict Profiles: Why and How. In [eks00], 2000

	[bccek00]
	Brodsky S., Clark A., Cook S., Evans A., Kent S.: A Feasibility Study in Rearchitecting UML as a Family of Languages using a Precise OO Meta-Modeling Approach. Available at [puml], 2000

	[ceks00]
	Clark T., Evans A., Kent S., Sammut P.: The MMF Approach to Engineering Object-Oriented Design Languages. Available at [puml]

	[dw98]
	D’Souza D., Wills A.: Objects, Components and Frameworks with UML: The Catalysis Approach. Addison-Wesley, 1998

	[eks00]
	Evans A., Kent S., Selic B.: Proceedings of <<UML>> 2000 – The Unified Modeling Language, Advancing the Standard: 3rd International Conference (LNCS 1939). Springer-Verlag, 2000

	[k99]
	Kobryn C.: UML 2001 : A Standardization Odyssey. Communications of the ACM, 1999 [42, 10]

	[omg]
	OMG web site: http://www.omg.org/

	[omg99]
	OMG Unified Modeling Language Specification. Available at [omg], 1999

	[omg00]
	Request for Proposal: UML 2.0 Infrastructure RFP. Available at [uml2wg], 2000

	[puml]
	Precise UML group web site: http://www.puml.org/

	[uml2wg]
	UML 2.0 Working Group web site: http://www.celigent.com/omg/adptf/wgs/uml2wg.htm

