Intensive use of UML model transformation:

the ACCORD environment

Sébastien Gérard, François Terrier

LIST (CEA - Technologies Avancées) DTSI - CEA/Saclay
F-91191 Gif sur Yvette Cedex France
Phone: +33 1 69 08 90 57 Fax: +33 1 69 08 83 95
Sebastien.Gerard@cea.fr; Francois.Terrier@cea.fr.

Several years ago studies have been performed to extend object oriented programming paradigm to concurrent programming. They have lead to the definition of active object concepts integrating better both set of paradigm in fully object oriented and unified models. They have been the basis for the definition of the real-time objects paradigm supporting real-time developments with automatic real-time implementations keeping the low level real-time implementation mechanisms transparent to the developers ([1] and [2, 3]).

The ACCORD approach is one such attempt [4, 5, http://wooddes.intranet.gr/]. Its objective is to provide a framework for real-time development as close as possible to classic object oriented methods. Thanks to high level abstractions (namely the real-time active object concept [12]) real-time modeling can be achieved without mixing up implementation issues with domain specific one. The main purpose of this new concept is to offer to engineers a rich and efficient abstraction that will allow them to model very fast complex real-time applications. It aims to answer to their needs of describing real-time features of their applications. So within this approach, it is tried to keep the well-known advantages of object oriented techniques yet with the idea to integrate in this model real-time features in order to provide sufficient abstractions of the real time field.

To achieve this objective, ACCORD/UML proposes an extension of UML thanks to the definition of a UML profile supporting both aspects of a real-time behavior specification: quantitative and qualitative. For that, the main modeling features introduced by ACCORD/UML method define a set of modeling rules involving largely models transformations techniques. These one are used at two levels during the development of an application:

1. At modeling stage of an application in order to help the modeler to refine automatically some parts of her/his models between the different the step of the process;

2. At implementing and validation stage.

The rest of this position paper presents some of them to illustrate both way to use them.

Automatic refinement of UML models

ACCORD/UML provides several automatic model transformations to help and guide an engineer to perform application modelling. Both following examples illustrate some of the generic transformations proposed by the methodology ACCORD/UML and supported by its underlying tool:

· Automatic building of the initial model basis for detailed analysis;

· Broadcast communication through a dedicated use of UML signals.
These two examples illustrate transformation mechanisms allowing automatic refinements of existing models.

Automatic building of the initial model basis for detailed analysis

To facilitate construction of an application in terms of reusable components, one advocates a generic software architecture that places emphasis on separation between the core of the system and its interface with the environment. This architecture is divided into three separate layers (Figure 1). The first is defined by the ActiveInterface package describing active interaction points (i.e. where and how the environment "stimulates" the system). The lowermost layer is made up of the PassiveInterface package. This layer describes the points at which the system interacts with its environment and models the environmental interface required for the system to operate. Indeed, this layer defines the specification the environment needs to run the developed component. The middle layer describes the core of the system.

Each actor identified in the use case model built during preliminary analysis results in identification of a corresponding interface class in the model generated during detailed analysis. All of the classes introduced in this way are interface classes
 (and are therefore either given an "interface" stereotype or depicted as circles with class name labels) and are assigned the same names as the actors they refine.

If an actor is stereotyped as « active », the corresponding class is positioned in the active interface package. If, on the other hand, it is stereotyped as « passive », it is included in the passive interface package.

[image: image1.wmf]

Passive Interface

Active interface

OnOffButton

CarStarter

Accelerator

Brake

Speedometer

RegulatorDisplay

MotorSystem

Speed regulating

system

maintain speed

stop regulating

suspend regulating

resume regulating

start regulating

«

passive

»

«

passive

»

«

passive

»

«

active

»

«

active

»

«

active

»

«

active

»

Systeme core

RegulatorDisplay

Speedometer

MotorSystem

OnOffButton

Brake

Accel

erator

CarStarte

r

Use case model resulting from preliminary analysis step

Structural model resulting from the transformation model

Figure 1 : From preliminary analysis models towards detailed analysis models.
Broadcast communication through a dedicated use of UML signals

The UML definition of a signal send action raises the following question with respect to use of signals as a communication mode: Is the list of receivers explicitly specified in the application model or is it implicit in the model?

If one or more signal targets are explicitly contained in the model, the target attribute of the SendAction signal explicitly contains this list of receivers. If not, the send action target attribute is equivalent to the reserved keyword "all". This situation requires a mechanism external to the application and capable of deducing from the user model the actual set of targets of the communication.

Within ACCORD/UML, signal-based communication is used for broadcast-type asynchronous communication. In this mode, the object sending the signal does not know the signal targets and the receiver object or objects do not know the sender. Sender and receiver do not, in fact, normally need to know each other (i.e. no structural or operational link is required between sender and receiver). To support this communication mode, we have also designed a specific design pattern enabling models using such signal-type communication mode to be executable (Figure 2 & Figure 3).

[image: image2.wmf]

Before model transformation

Figure 2 :Broadcast via signal-based communication: before model transformation.

[image: image3.wmf]

After model transformation

Figure 3 :Broadcast via signal-based communication: after model transformation.
UML models to another language

Model transformations supported by ACCORD environment provide too translation procedures from UML to another formalism or language. Two kinds of language are targeted:

· Implementation languages such as C++ to build executable applications;

· Formal languages for validation purpose.

Real-time code generation

The specification of quantitative real time constraint is performed on the model itself (deadlines, periods, priorities, etc.). These specifications can be set from the early stage of the development and are maintained during model enrichment until final implementation. Executing model of real-time objects and ACCORD implementation frameworks avoid to require the developers to translate the real time constraint into low level mechanisms implementing their management (timers setting is no more necessary and scheduling policies are automatically provided and implemented in the application through the implementation framework). Concurrency constraints are managed in the same way by the approach: there are declared at the operation level (because they relies on their implementation specification) and automatically managed in the final application. Scheduling policies integrate these both types of constraints (i.e.: the real-time and concurrency constraints).

In our current environment development, the targeted language is C++. Our first mechanism of real-time code generation, targeted implementation of a multi-tasking application relying on a given real-time operating system (in our case VxWorks). However other execution model can be targeted from the same application UML model. In particular, we are studying the definition of ACCORD/UML model transformation for parallel calculator programmed in C on a set of DSP without any operating systems (ACOTRIS project, http://193.106.8.72/rntl/FichesA/Acotris.htm).

Moreover, when a user model involves distribution issues the code generator will generate the resulting IDL program in order to link the application with a RT Object Request Broker (in our case TAO, http://www.cs.wustl.edu/~schmidt/TAO.html).

IOSTL (Input Output Transition Labelled Systems) formalism generation

Formal approaches seam to be promising in the context of specification verification. But their main drawback is to be difficult to tackle because of their underlying mathematical formalism. This point has also contributed to heavily impair their using within industrial projects. Engineers prefer also often to apply more operational techniques even if they are not so reliable than formal ones. Objects oriented approach is one of such operational techniques and their intrinsic features such as, encapsulation and inheritance, are well appreciated by developers. Moreover, the incoming of UML, as a standard language for object oriented modelling, was a major factor in the fact that they are now more and more used within industrial projects.

The idea of ACCORD/UML is to use formal techniques through the interface of a high level tool allowing to manipulate UML specifications that are more comprehensible by engineer. Our purpose is also to make test generation using as open and automatic as possible tools underlying formal techniques in order the designer does not need to know anything on the their mathematical language.

For that purpose we have decided to use a tool developed in our laboratory by a team involved in formal validation techniques. This tool is called AGATHA and it provides a methodology and its frameworks to incrementally verify applications specifications by applying a verification technique similar to test integration techniques for software [6, 7].

General principles of the work

The Figure 4 illustrates the test generation process from UML models :

1. the designer invokes the tool which translates UML models specification into a IOLTS specification
2. AGATHA analyses the specification and supplies its results under the form of a textual file. This file contains the description of the symbolic execution tree that represents all possible execution paths of the analyzed system. Indeed, an execution path represents a state series that depends on the input values applied to the system. The set of possible value ranges for each input value implying an execution path defines its called Path Condition (PC);
3. in order to make the results file more readable, it is analyzed via a second tool which constructs one sequence diagram per possible symbolic execution path identified by AGATHA;
4. the designer can also study these sequence diagrams and fix the errors in his/her models;
5. this process can be repeated until the model is correct.

[image: image4.wmf]

One sequence diagram per

symbolic execution path

SeqDiagGenerator

UML2LSA+

LSA+

Model

UML model

Tr

ain

Con

trol

Cir

cuit

STRU

CTUR

E

INTER

ACTIO

NS

COMPOR

TEMENT

S

Results

File

AGATHA

Objecteering

Figure 4 : Principle of the AGATHA behavioural analysis of UML models.

Principles of translation

In order to have a translator as simple as possible, we have first limited the possibility of the UML state machines specification to be as closest as possible of the LTS formalism analysable by AGATHA. In a further stage, the idea is to translate more general UML specification into this minimal subset.

So the restrictions of UML state machine semantics we made are following:

	· simple states and simple transitions only;

· only CallEvent triggers;

· one CallAction or a sequence of assignment actions per transition;

· no action on states (i.e. no Activity, Entry or Exit actions).
	[image: image6.wmf]

S1

S2

op1 [a1=0]

/O2

-

>op2();

S1

S2

op1 [a1=0]

/a1:=2;

a0:=a0+5;

[image: image7.wmf]

S1

S2

op1 [a1=0]

/O2

-

>op2();

S1

S2

op1 [a1=0]

/a1:=2;

a0:=a0+5;

The execution semantics description of UML state machines relies on the definition of an underlying abstract machine implementing the state machine. It is made of three parts:

· an event queue storing the incoming events till they are consumed;

· an event dispatcher that selects and dequeues the event instances contained in the event queue;

· an event processor that consumes the event instances supplied by the event dispatcher.

In the other hand, we have to respect some important points: active objects of an application communicate through asynchronous message passing and yet according to AGATHA communication mode, parallel automata of the IOLTS systems communicate via « rendez-vous » mechanism. This constraint has lead us to the following choice. Each active object of an application is translated into parallel IOLTS modules (cf. Figure 5):

· the first one is equivalent to the event processor defined in the abstract machine of UML. It is responsible for consuming the event instances received by the object. It is very similar to the UML state machine specification describing the behaviour of the object.

· the second one represents the queuing mechanism of active object communication. It will insure asynchronous communication mode between objects of an application, that has to be non-stopping, while the communication through « rendez-vous » on which relies AGATHA is stopping. Indeed with « rendez-vous », the caller is stopped until the callee takes into account the request of the calling module. So, this second module stores all the incoming event addressed to the modelled object and dequeues them.

Moreover, execution semantics of UML stat machines is widely based on the RTC assumption. That means that an event instance may be dequeued and dispatched only when the processing of the previous current event instance is ended. For that, regarding to the UML RTC assumption, this requires a synchronisation mechanism between the two modules (events processor and events dispatcher) to insure the respect of the RTC assumption. Finally, the event dequeuing policy adopted for our study is of type FIFO (cf. Figure 5).

[image: image5.wmf]

Incoming event instance

IOLTS automaton

, myObject,

corresponding to the

UML

event processor

Event to process

IOLTS automaton

, myObject_FIFO

, corresponding to the

UML

 event dispatcher

Incoming event instance

UML active Object, myObject

De

-

queued event instance to

proc

ess it

Event queue

UML

 state machine

representing the behavior

of the Active Object

Automaton, corresponding to

the behavior of the Active

Object

Translated

myObject

ev

ev

myObj

ect_FIFO

myObject

Figure 5 : Breaking down principle of a UML active object into two IOLTS parallel automata.

Conclusion

Engineers are more and more faced to the hard problem of developing more sophisticated real-time systems while time to market and cost constraints are constantly increasing. So our purpose through our work is to facilitate the task of designer through the definition of a dedicated UML profile for real-time systems [8, 9]. In this context, model transformation techniques seams to be a very good approach to reach these objectives of helping and even guiding a developer along its development work. With such techniques, we will certainly be able to automate some parts of the development process e.g. the tasks of going from one step of the process to another.

Moreover, model transformation, when it consists to transform UML into another formalism, is a convenient way to reuse dedicated techniques and above all their underlying tools to achieve a given goal. For our case, it means to be able to do validation thanks to formal techniques.

To conclude may be now we could begin to speak about CAM meaning, Computed Assisted Modeling.

References

[1]
F. Terrier, G. Fouquier, D. Bras, L. Rioux, P. Vanuxeem, and A. Lanusse, “A Real Time Object Model,” presented at TOOLS Europe'96, Paris, France, 96.

[2]
S. Gérard, N. S. Voros, C. Koulamas, and F. Terrier, “Efficient System Modeling of Complex Real-time Industrial Networks Using The ACCORD/UML Methodology,” presented at DIPES'2000, Paderborn University, Germany, 00.

[3]
S. Gérard, F. Terrier, and A. Lanusse, “Refinement of UML for Real-Time Modeling with Active Objects,” presented at RTS'2000, Paris, 00.

[4]
A. Lanusse, S. Gérard, and F. Terrier, “Real-Time Modeling with UML : The ACCORD Approach,” presented at "UML98" : Beyond the Notation, Mulhouse, France, 98.

[5]
S. Gérard, “Modélisation UML exécutable pour les systèmes embarqués de l'automobile,” in GLSP. Paris: Evry, 00.

[6]
J. P. Gallois and A. Lanusse, “Le test structurel pour la vérification de spécifications de systèmes industriels,” Génie Logiciel, vol. 46, pp. 145-150, 1997.

[7]
J. P. Gallois and A. Lapitre, “Analyse de spécifications industrielles et génération automatique de tests,” presented at ICSEA, Paris, 1999.

[8]
F. Terrier and S. Gérard, “For a full integration of real-time concern into 00 models, or "How to popularize real-time programming?",” presented at UML'2000, Panel -Heaven or Hell? A "Real-Time " UML?-, York, 00.

[9]
F. Terrier, N. Voros, and U. Brockmeyer, “Specification, Implementation, and Validation of Object-Oriented Embedded Systems,” presented at ECCOP, workshop SIVOES, Cannes, Sophia Antipolis, 00.

� EMBED Word.Picture.8 ���

� UML definition : "An interface is a named set of operations that characterize the behavior of an element."

_1042360488.doc
[image: image1.jpg]

Before model transformation

_1042369720.doc

/a1:=2;�a0:=a0+5;

op1 [a1=0]

S2

S1

/O2->op2();

op1 [a1=0]

S2

S1

_1042369923.doc

ev

ev

myObject

Translated

Automaton, corresponding to the behavior of the Active Object

UML state machine representing the behavior of the Active Object

Event queue

De-queued event instance to process it

UML active Object, myObject

Incoming event instance

IOLTS automaton, myObject_FIFO

, corresponding to the UML event dispatcher

Event to process

IOLTS automaton, myObject, corresponding to the UML event processor

Incoming event instance

myObject_FIFO

myObject

_1042360517.doc
[image: image1.jpg]

After model transformation

_1042360084.doc

OnOffButton

CarStarter

« active »

« active »

« active »

« active »

« passive »

« passive »

« passive »

start regulating

resume regulating

suspend regulating

stop regulating

maintain speed

Speed regulating system

MotorSystem

RegulatorDisplay

Speedometer

Brake

Accelerator

CarStarter

OnOffButton

Brake

Structural model resulting from the transformation model

Accelerator

Use case model resulting from preliminary analysis step

Active interface

MotorSystem

Speedometer

RegulatorDisplay

Passive Interface

Systeme core

_1027248413.doc

One sequence diagram per symbolic execution path

SeqDiagGenerator

UML2LSA+

LSA+

Model

COMPORTEMENTS

INTERACTIONS

STRUCTURE

Circuit

Control

Train

UML model

Results

File

AGATHA

Objecteering

