Tool Support for Transforming UML Models to a Formal Language

José Sáez, Ambrosio Toval, José Luis Fernández Alemán {jsaez, atoval, aleman}@um.es

Dpto. de Informática y Sistemas - Universidad de Murcia (Spain)

Abstract

This paper describes the design of a tool named RIVIERA (RIgorous VIrtual Environment for Requirements Analysis). RIVIERA aims to support the process of transforming the, what we call, “conceptual components” (UML models and diagrams, which can be generated with any UML CASE tool, such as Rational Rose) into a formal language, so that formal analysis and verification of properties can be made on these models. The formal framework is provided by the Maude language. We have established a mapping between the diagrams and the corresponding Maude terms, which allows us to check and verify the models within the Maude engine.

To make the use of the formal framework easier, RIVIERA isolates the user from the underlying formalism, thus allowing him to select different tests to apply to the model. RIVIERA offers a friendly environment to “play” with the model, by creating and deleting both objects and links at will. All these activities result in a set of reports which will be presented to the user in HTML format.

We are also working on integrating both models and results within a comprehensive asset repository, thus covering these two important aspects of model reuse. Our aim is to bring the promises of software reuse and quality closer to real software engineering practices.

Keywords:

Conceptual component, UML, modelling, formal verification, tool support, simulation

1. Introduction

When reusing a UML [1] model, the need exists to ensure that the model satisfies a set of essential properties or requirements. The use of formal techniques to perform verification of properties on these models is especially suitable when dealing with safety critical and embedded systems. Moreover, according to Meyer [5], the extra effort of applying mathematical techniques to specify software becomes economically justifiable when they are applied to the development of reusable components.

The Software Engineering Group from the University of Murcia, is working on the formalisation of graphical techniques and the formal verification of UML model and diagram properties [9, 10], within the formal framework provided by the executable specification language Maude (an extension of OBJ) [7]. The results obtained include a correspondence between the UML diagram elements and the Maude terms, which formally represent these elements. In order to use these results in practice, we need a tool which automates the task of translating a diagram to Maude and the application of different tests to it, as well as letting the user “play” with the model (simulate it).

This paper describes the design of RIVIERA, a tool which is being developed to support the analyst in such task. RIVIERA makes use of a test repository, some of which tests are applicable only to certain types of diagrams (for example, some tests are specific to statechart diagrams, others are specific to class diagrams). These tests must be understood as statements or formulas which allow the analyst to verify a certain property within the diagram.

The models which RIVIERA will work with are models created using a UML CASE tool and stored in XMI format [8].

The idea of developing and having a repository of trusted components is receiving a lot of attention nowadays. B. Meyer is leading a project named “The Trusted Components Initiative” [12], which “is a cooperative effort to provide the software industry with methods, techniques and tools for building high-quality reusable components, thereby elevating the general level of trust that software users, and society at large, can have in these components”. In this initiative, trust is built from a combination of approaches, which include the use of design by contract and mathematical proofs of correctness, among others [6]. However, there does not seem to be much activity around this project up to date.

The remainder of the document is organised as follows. In the next section, we present an overview of the formal framework used for verification. Section three describes the main components of RIVIERA, as well as the formal transformation and verification processes. Finally, section four establishes some conclusions, as well as future work lines.

2. Formal framework

The Maude [7] formal language, which is based on equational and rewriting logic, establishes the formal framework within which diagrams will be analysed. In our context, each diagram is represented as a single term built over a signature from a previously defined rewriting theory. The dynamic semantics of these diagrams are also denoted by Maude terms in such a way that an object or a link can be formally manipulated. This allows for equivalent formal representations of the different UML models, which can be formally analysed. We have established a mapping between some kinds of UML diagrams and the corresponding Maude terms, namely: class diagrams [10], statecharts [9], and, currently, sequence diagrams, but there is still room to extend this mapping to some other types of diagrams. This is the subject of ongoing research.

The tests that can be applied to a diagram can be formally expressed as formal equations, and they can be divided in two categories: generic tests (concerning the UML syntax and semantics) and domain tests (particular to a specific project to which a given UML model is related). To obtain the domain tests, the corresponding equations have to be written manually, starting from the requirements and test plan, in those models which come with a requirements specification document and a defined test suite. At present, this task requires the collaboration of an expert to translate the specific requirements, obtained from the SRS (Software Requirement Specification) and the STS (Software Test Specification) documents, into formal equations by using the formal specifications previously obtained.

In addition, the formal framework can be used to give support to many types of transformations, including abstractions and refinements of behaviour models as well as translations between related UML models (e. g. from sequence diagrams to statecharts) [2, 11].

3. RIVIERA main components

RIVIERA works in a distributed manner, interacting with the formal engine through the Internet, as shown in Figure 1.

Fig. 1. Distributed Structure of RIVIERA

The are two main modules: the RIVIERA client, which displays the graphical user interface, and interacts with the user; and the server, which listens for requests addressed to the Maude engine and forwards them to it. When the Maude engine finishes, the server gets the results and sends them back to the RIVIERA client, which interprets those messages for the user, and shows him a report (in HTML).

The RIVIERA client part consists of a set of modules or components. These modules intercollaborate to carry out the global task. The components are, namely: the model reader, the translator (or code generator), the verification engine and the simulator. All of them are coordinated by a central component called the coordinator, which is responsible for passing messages between the components. These modules make use of a common, restricted implementation of the UML metamodel, whose instantiation constitutes the common data model which is shared by all the components. The role of each RIVIERA component is described below (see Fig. 2).

The common data model (metamodel implementation)

In order to represent the UML model, first of all we need a data structure which allows us to capture all the information we are interested in regarding the model. For example, to capture a class diagram, we need a means to represent which classes belong to the model, what methods and attributes each class has, the parameters and result types of each method; or within a statechart we may want to capture the existing states, and so on. Of course, this information is closely related to the current formalisation performed in Maude. As we are not interested in all types of UML diagrams, nor in all the information that a user can introduce into a UML model (UML is too generic), the data structure we have defined within RIVIERA intentionally does not reflect some UML constructs. Thus, our data model is a simplified representation of the UML metamodel.

The importance of this simplified metamodel implementation lies in the fact that it provides a common vocabulary for all the other components, and is the central structure that unifies the tasks performed by each component. In this paper, we will refer to a metamodel instance as the model, which is the object under study while running RIVIERA, and which will be passed from one component to another.

The model reader(s)

To facilitate the sharing of models, many UML CASE tools (Rose [3], ArgoUML [4]…) support the XMI format [8]. In RIVIERA, the model reader also makes use of this format. Thus, a model contained in an XMI file (e. g. generated with Rose) is used for constructing a metamodel instantiation. Due to its modular and interface-focused design, it will be very easy to have different model readers within RIVIERA, thus supporting different formats (for example, the “de facto” Petal format of Rose).

The translator

This component is responsible for generating the Maude term corresponding to the current model. Its design is based on a translator interface and one or more classes that implement this interface. Thus, one translator can be easily removed and substituted by a better one (faster, or more precise) or by a different translator if the formal language supporting the verification process changes. The translator interface can also be used to implement different code generators to generate the implementation structure of the model in common programming languages, but as this is currently done by most UML CASE tools, it is not a priority target for us.

The verification engine and the simulator

The code generated by the translator is passed to the verification engine (called analyser or verifier). From this moment, the engine knows the structure of the model, and waits for requests to apply different tests to that model, as well as the creation and destruction of objects and links. There are two types of requests. The first are predefined within the engine, so the user only asks the engine to apply a particular built-in test. The second type of tests can be user defined, by using the syntax and semantics given by the language of the engine (in this case, Maude). Of course, we will include a set of common tests with RIVIERA (which will consist of both formulae and descriptions in English), so that the user does not need to be familiar with Maude, and he has just to select one from a list. Additionally, the user can issue commands to create or delete instances of the different classes and links of the model. RIVIERA will show in each case the current set of created instances, and will allow the user to examine a given instance in detail.

[image: image1.wmf]MAUDEGenerator

JAVAGenerator

TXTReader

XMIReader

OASISGenerator

Coordinator

LocalSimulator

MAUDESimulator

RoseReader

GUIImpl

RemoteSimu

lator

DataModel

CodeGenera

tor

ModelReader

Simulator

GUI

Riviera

Fig. 2. Class diagram showing the main components of RIVIERA (client), along with the corresponding interfaces

At the present, the verification engine only runs on Linux and SunOS environments, and we want to be able to use RIVIERA from a Windows-based PC, since the majority of the most extended UML CASE tools run on this platform. Thus, we need to create two intermediate communication components which are responsible for the communication between the engine (which will be on a Linux box) and the end-user GUI (which can be on any platform which supports a Java virtual machine). These two communication components will make use of sockets. Nevertheless, this is hidden from the user of the tool, who only needs to know the computer IP address where the engine lives, to make a proper configuration of the RIVIERA client part.

As is the case with the rest of the components, an interface for the verification engine has been defined, so that it can be easily substituted for any other engine which conforms to this interface. The user will interact with the Maude engine through the “simulator”, which is a component implementing the verification interface. A “remote simulator” will forward all the requests to the corresponding engine (in this case, Maude, located in another machine over the Internet). However, the possibility of using a local “simulator” instead of a remote one is left open, provided this local simulator implements the same services. The only difference between a local simulator and a remote one is that the local one does not perform any network communications task.

The coordinator

The component which unifies the work done by all the other components is the coordinator. Its tasks may be seen sometimes as redundant, as it is responsible for passing messages from one component to another and then passing back the results to the first component. This may be criticised for being an over centralised approach, but in doing this we can reduce the coupling between the other components, thus making RIVIERA highly modular, due to a very extensive use of interfaces, which act as contracts between the different components. Our goal in doing this is to make an open tool so that the verification process is open-ended: RIVIERA can be easily augmented with different readers, translators, verifiers, and result formatters.

Note that it is not necessary for all verifiers to be formal, and also that different tools can work on the same model or diagram. For example, a metrics tool may analyse the model and compute some kind of statistical results. Another tool might make an animation of a class or statechart diagram, and generate a report based on this simulation. A code generation tool could use the same model to produce code in some programming language. What all these tools have in common is the fact that they receive a UML diagram in a predefined format (given by the corresponding translator) and they generate some kind of results (statistics, simulation report, source code...). These results can then be attached to the UML model and later stored into a repository.

5. Conclusions and future work

In this paper, we have described a tool (RIVIERA) which gives support, within a distributed context, to the process of formally verifying, transforming and analysing UML models. We have described the main components that form RIVIERA, some of which are currently under development, including translators from CASE-based UML models to Maude-based UML terms. The tool is very open, because the different components have a clear separation with respect to each other, due to an interface-focused design. For example, it is very easy to substitute the Maude-based analyser by other analysis tools aimed at testing or measuring other types of properties about the models. This could be useful in connecting RIVIERA to a model-checking tool, for instance. In this way, we facilitate the evolution and extension of the tool via the evolution and addition of individual components. However, some coupling between some of the components is unavoidable. For example, the translators are tied to the format needed by the analyser tool; and the sender and receiver components are strongly coupled to a common protocol and infrastructure for message transfer (in this case, sockets, but it would be very easy to replace the sockets by either CORBA or RMI, for example).

6. References

[1] Booch, G., Jacobson, I. and Rumbaugh, J. "The Unified Modeling Language User Guide", Addison-Wesley, 1999.

[2] J. L. Fernández, A. Toval. “Rigorously Transforming UML Class Diagrams”. Proceedings of the V Spanish Conference on Software Engineering and Databases (JISBD ’00). C. Delgado, E. Marcos, J.M. Marqués (eds.) http://jisbd.infor.uva.es/jisbd/. University of Valladolid (Spain), 7-10 November 2000.

[3] Rational Rose CASE tool. www.rational.com
[4] ArgoUML CASE tool. http://argouml.tigris.org
[5] Meyer, B. "The Next Software Breakthrough". Computer. July 1997.

[6] Meyer, B, Mingins C. and Schmidt, H. "Providing Trusted Components to the Industry". Computer. pp. 104- 105. May 1998.

[7] Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J. and Quesada, J. "Maude: Specification and Programming in Rewriting Logic", Computer Science Laboratory SRI International, January 1999.

[8] OMG. "XML Metadata Interchange (XMI)”. Proposal to the OMG OA&DTF RFP 3: Stream-based Model Interchange Format (SMIF). October 1998.

[9] Fernández, J. L., Toval, A. “Can Intuition Become Rigorous? Foundations for UML Model Verification” Proceedings of the The Eleventh International Symposium on Software Reliability Engineering (ISSRE 2000) San Jose, California, USA. IEEE. October 8-11 2000.

[10] Toval, A., Fernández, J. L. “Improving System Reliability via Rigorous Software Modeling: The UML Case" Proceedings of the 2001 IEEE Aerospace Conference (Track 10: Software and Computing), Montana, USA 10-17 march, 2001 (to appear)
[11] Jon Whittle, João Araújo, Ambrosio Toval and Jose L. Fernández "Rigorously Automating Transformations of UML Behavior Models" in Dynamic Behaviour in UML Models: Semantic Questions in conjunction with UML 2000 York, UK October, 2-6, 2000
[12] “The Trusted Components Initiative”. http://www.trusted-components.org
Maude Engine

RIVIERA Server

INTERNET

RIVIERA client�(UI, model browser, reader...)

Model File

(XMI format)

(

UML CASE tool (Rose...)

