
 1

From Sequence Diagrams to Behaviour Models  
Sebastian Uchitel, Jeff Magee and Jeff Kramer 
Department of Computing, Imperial College 

180 Queen’s Gate, London SW7 2BZ, UK 
 
1 INTRODUCTION 

Sequence Diagrams 
The software engineering community has long understood the importance of requirements 
elicitation. Stakeholder involvement in the elicitation process and tools to help build a 
common ground between stakeholders and developers is essential in order to obtain a good 
requirements definition. Scenarios have become increasingly popular as a means of 
articulating stakeholder requirements. Scenarios describe how system components (in the 
broadest sense) and users interact in order to provide system level functionality. Each scenario 
is a partial story which, when combined with all other scenarios, should conform to provide a 
complete system description. Thus stakeholders may develop descriptions independently, 
contributing their own view of the system to those of other stakeholders.  

The Unified Modelling Language has a notation for scenarios called Sequence Diagrams [1]. 
These diagrams, together with their counterpart from the telecommunication industry Message 
Sequence Charts [2], have become widely accepted notations for scenario-based specification. 
Although sequence diagrams facilitate the requirement elicitation process, they have not been 
exploited to their full extent for requirement analysis and for transitioning into the design 
phase. This is due fundamentally to the lack of tool support and the lack of agreement on the 
exact meaning of this graphical notation.  

Behaviour Models  
Modern software systems tend to be of a highly complex and concurrent nature, and often have 
strict correctness requirements. Pre-deployment and pre-development reasoning about system 
behaviour is crucial in application areas such as industry, avionics, health care, and defence 
where the cost of failure is extremely high.  However, the wide acceptance of Java with its in-
built concurrency constructs means that concurrent programming is no longer restricted to the 
minority of programmers involved in operating systems and embedded real-time applications 
[3]. Thus, there is further need to provide accessible technology for understanding the subtle 
properties of the concurrent system behaviour.  

The main principle behind analysis of concurrent system behaviour is the construction of 
models. These models are simplified representations that focus on the interactions between 
components working concurrently. They are usually called behaviour models as they describe 
how components behave with respect to other components. If rigorous analysis is to be 
performed, behaviour models must be formally defined. In other words, they must be based on 
mathematical modelling techniques and have well-understood properties. A behaviour model 
can be used as a precise specification of intended behaviour, as a prototype for exploring the 
system behaviour and also to allow for automated checking of model compliance to properties 
(model checking). Numerous tools that allow model checking and animation of behaviour 
models exist (e.g. [3-6]).  

Sequence Diagrams to Behaviour Models 
Scenarios view systems as collections of independent, concurrent components and show how 
they interact in order to provide system level functionality. This view coincides with that of 
behaviour models for concurrent systems. Nevertheless, although it is clear that there is an 
overlap between scenario specifications and behaviour models, the precise relation between 
these two is usually unclear. Our general goal is to try to clarify the relationship.  

There seems to be an interesting balance between the two in terms of potentials and 
shortcomings. Scenario specifications are still maturing with respect to the definition of 
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rigorous semantics and analysis tools, however they already have wide acceptance in industry. 
Behaviour models have not yet had a major impact on practitioners, nevertheless boast an 
important mathematical foundation and efficient tools for behaviour analysis. We believe that 
understanding the relation between scenarios and behaviour models can help define techniques 
and tools that leverage both areas. 

2 RELATED WORK 
There has been much work on scenarios. Publications deal with subjects that range from 
formal semantics to informal development methodologies. In general, they all agree on what is 
a scenarios (in its most simplest sense) and how it should be interpreted. However, from then 
on there are more differences than similarities. Scenarios specification languages have been 
enriched by a variety of constructs that include specification of alternatives, loops, timers, 
message loss, component creation and destruction, compositional constructs and data [7, 8]. 
Besides, as scenarios are enriched with more complex features, their semantics becomes 
unclear. Even in the presence of very basic features, important differences in interpretation 
occur. This is especially true when considering a set of scenarios and how they relate. 

In the approach adopted by the International Telecommunication Union (ITU) [2] and others 
[9-11], focus is on providing scenario-based specifications with a means for managing 
complexity. Basic Message Sequence Charts (bMSCs) are used to specify simple sequences of 
behaviour whilst High-level Message Sequence Charts (hMSCs) are used to indicate their 
possible orderings. hMSCs allow stakeholders to reuse scenarios within a specification and to 
introduce sequences, loops, and disjunctions of bMSCs [2]. The advantage of the hMSC 
approach is that it allows stakeholders to break up a scenario specification into manageable 
parts in a simple, intuitive, and operational way, and to show how these different parts relate. 
A diffent approach is presented in [12-14], where focus is on identifying, throughout the set of 
scenarios, those states that are considered to refer to the same component state. For example, 
Whittle and Schumann [12] use the Object Constraint Language (OCL) to express pre- and 
post-conditions for messages. These are traversed with bMSCs to produce a valuation of 
global state variables in bMSC states. These valuations are used to identify equivalent states. 
Another example is the statechart synthesis algorithm in SCED [14]. This approach employs 
the domain-specific assumption that the capability of outputting a specific message uniquely 
identifies the state of a component.  

In terms of semantics of scenario-based specifications, there are several approaches: In some 
approaches scenario notations are used with no well-defined semantics as for example in some 
UML-based development methodologies such as [1, 15, 16]. These approaches allow 
documentation and communication of requirements but are hard to use for rigorous analysis as 
their meaning is unclear. In other cases, algorithms are provided for translating scenarios into 
other notations [12, 14, 17]. These approaches provide more insight to the meaning of 
scenarios if the target notation has a well-defined semantics. However, this procedure, called 
synthesis, is rather operational and can (and usually does) hide in the synthesis algorithm many 
subtle aspects of the scenario semantics. We believe that a better approach is to define a 
declarative semantics for the scenario specification language and to construct a sound 
synthesis algorithm with respect to the semantics. Among the approaches using synthesis, 
there are several approaches that generate statechart models [12-14, 17]. Authors argue that 
statecharts provide a more structured, and therefore more understandable, view of component 
behaviour. However the drawback is that statechart semantics (based on micro and macro-
steps) is rather complex and availability of automated analysis tools that support the formalism 
is limited. An interesting aspect of synthesis is that it offers the possibility of using additional 
information in the form of alternative specifications [12, 13] or domain-specific assumptions 
[14] to produce behaviour models that integrate different information sources. Finally, several 
formal semantics for scenario languages have been proposed. In [11] the semantics complies 
with a delayed choice policy. Meaning that a component, when choosing between two 
different possible scenarios, will postpone the decision if both scenarios have common initial 
events. Although delayed choice is a reasonable assumption in many cases, there are some 
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situations where non-determinism is desirable. The formal semantic definition is given in 
terms of process algebra using non-standard operators to model delayed choice. Other 
formalisations exist, both using delayed choice (e.g. [18, 19]) and not (e.g. [20]).  

In terms of automated analysis of scenario-based specifications there has not been so much 
work. Some approaches focus on detecting some consistency criteria (e.g. [9]) which is done 
syntactically. Other approaches such as in [21] focus on checking specific properties such as 
process divergence and non-local choice. However, in these approaches, there is no 
construction of a model that can then be checked for consistency or analysed with respect to 
ad-hoc system properties which might be proposed by designers or stakeholders. 

3 WORK IN PROGRESS 
One of our objectives is to facilitate the development of behaviour models in conjunction with 
scenarios. Being scenarios complementary to such models, in addition to providing an 
alternative view, we believe that there is benefit to be gained by experimenting with and 
replaying analysis results from behaviour models in order to help correct, elaborate and refine 
scenario-based specifications.  

Our initial focus has been on existing approaches to scenario specifications and on 
understanding the rationale behind the many assumptions and uses they have. It became clear 
that our approach should try to integrate existing ones by providing a core language on which 
other languages could be built on. In [22] our aim has been to provide a workbench for 
supporting various approaches to scenario-based specifications, behaviour synthesis and 
analysis. We have defined a formal semantics for a scenario language that integrates 
approaches based on high-level message sequence charts and on identifying component states. 
However, instead of assuming specific criteria for identifying component states, we provide a 
simple mechanism for making this information explicit within a sequence diagram using state 
labels [2]. In this way we aim to provide a workbench for approaches such as [12-14] that 
allows for explicit additional information (usually in some other formalism such as OCL) 
and/or domain-specific or other assumptions within an scenario-based specification. 
Furthermore, we show how many of these assumptions can be automatically translated into 
state labels. The semantics is given in terms of Labelled Transition Systems (LTS) and parallel 
composition [23], which are fully understood and widely accepted mathematical constructs for 
modelling concurrent systems. In addition, we have developed an algorithm for the automatic 
synthesis of system behaviour models. We have integrated our synthesis process to an existing 
model checking tool to support system requirements validation. This is done by first 
translating the specification into a Finite Sequential Processes (FSP) specification [3], which 
can then be analysed using the Labelled Transition System Analyser [3] by model checking for 
deadlock, safety and liveness properties and by model animation [24]. In [25] we have shown 
the soundness of our synthesis algorithm with respect to the language semantics. 

4 FUTURE WORK 
Scenarios have proved to be a good tool for bridging the gap between stakeholders and 
developers. However, up to now, this is mainly a one-way bridge in which developers gain 
more insight of stakeholders’ domain knowledge. Future work will be focused on building a 
bridge in the other direction, i.e. building mechanisms to provide feedback of the developer’s 
world to stakeholders. Preliminary work in this direction is promising. We are automating the 
construction of alternative system views from synthesised LTS models. Interestingly, taking 
advantage of the semantic overlap between high-level sequence diagrams and state labels, one 
can generate many different views. State labels identify component states across scenarios, 
while high-level sequence diagrams provide information about all components by relating 
scenarios. Moving information from one representation to the other allows for a large number 
of possible views that vary from long scenarios that start at the system’s initial state to short 
scenarios that optimise reuse. These views can allow stakeholders to gain more insight into 
their own scenario specifications or be used by designers to show the impact of their changes 
to behavioural models in a language that stakeholders manage. 
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The use of state labels and high-level sequence diagrams to add information on the branching 
structure of components suggests that it may be useful to develop some methodological 
guidelines for incrementally building a complete behaviour model from an initially scarce set 
of simple scenarios. We are looking into this aspect and hope to develop some tools and 
techniques to facilitate this process. 

Finally there is an important extension that we shall be looking at which is the inclusion of 
time into scenarios. This may allow us to develop a whole new set of tools and techniques for 
real-time systems. 

5 CONCLUSION 
We believe that scenario-based specifications and behaviour models can complement each 
other, providing alternative views of concurrent systems, models for experimentation and 
analysis in order to help correct, elaborate and communicate system requirements. To enable 
this, it is important to understand the relationship between scenarios and behaviour models and 
to define techniques and tools that can leverage the advantages of both areas. 
 
We have defined a formal semantics for a sequence diagram-based language that serves as a 
workbench for supporting various other approaches to scenario-based specification, behaviour 
synthesis and analysis. We have also developed a synthesis algorithm integrated with the 
LTSA model-checking tool that permits behaviour model analysis. We are now currently 
working on generating feedback from behaviour models in form of scenario-based 
specifications. 
 
REFERENCES 
 
1. Booch, G., J. Rumbaugh, and I. Jacobson, The Unified Modelling Language User Guide, 

ed. Addison-Wesley. 1998. 
2. ITU, ITU-T Recommendation Z.120. Message Sequence Charts (MSC'96). 1996, ITU 

Telecommunication Standardisation Sector: Geneva. 
3. Magee, J. and J. Kramer, Concurrency: State Models and Java Programs. 1999, New 

York: John Wiley & Sons Ltd. 
4. Kramer, J. and J.C. Cheung. Compositional reachability analysis of finite-state distributed 

systems with user specified constraints. SIGSOFT. 1995. Washington D.C. 
5. Burch, J.R., et al., Symbolic model checking: 10^20 and beyond. Information and 

Computation, 1992(98): p. 142-170. 
6. Holzmann, G.J. and D. Peled, The state of Spin. Prentice Hall Software Series, ed. 

Prentice-Hall. 1991. 
7. Mauw, S. The Formalization of Message Sequence Charts. 1st Workshop of the SDL 

Forum Society on SDL and MSC. 1998. Berlin, Germany. 
8. Haugen, O., MSC-2000 Interaction for the new Millenium. 2000, SDL Forum MSC2000. 
9. Alur, R., G.J. Holzmann, and D. Peled. An Analyser for Message Sequence Charts. Second 

International Conference on Tools and Algorithms for the Construction and Analysis of 
Systems (TACAS'96). 1996. Passau, Germany. 

10. Rudolph, E., P. Graubmann, and J. Grabowski. Tutorial on Message Sequence Charts '96. 
FORTE/PSTV. 1996. Kaiserslautern, Germany. 

11. Cobens, J.M.H., et al., Formal Semantics of Message Sequence Charts. 1998, 
Eindenhoven University of Technology: Eindhoven, The Netherlands. 

12. Whittle, J. and J. Schumann. Generating Statechart Designs from Scenarios. in 22nd 
International Conference on Software Engineering (ICSE'00). 2000. Limerick, Ireland: 
ACM Press. 

13. Somé, S., R. Dssouli, and J. Vaucher. From Scenarios to Timed Automata: Building 
Specifications from User Requirements. Asia Pacific Software Engineering Conference. 
1995. 

14. Systä, T., Static and Dynamic Reverse Engineering Techniques for Java Software Systems, 
in Dept. of Computer and Information Sciences. 2000, University of Tampere. 



 5

15. Texel, P.P. and C.B. Williams, Use Cases Combined with Booch, OMT, and UML. 1997: 
Prentice-Hall. 

16. Quatrani, T., Visual modelling with Rational Rose 2000 and UML. 1998, Reading, Mass.: 
Addison Wesley. 

17. Broy, M., et al. From MSCs to Statecharts. Distributed and Parallel Embedded Systems. 
1999: Kluwer Academic Publishers. 

18. Heymer, S. A Non-Interleaving Semantics for MSC. 1st Workshop of the SDL Forum 
Society on SDL and MSC. 1998. Berlin, Germany. 

19. Katoen, J.-P. and L. Lambert. Pomesets for Message Sequence Charts. in 1st Workshop of 
the SDL Forum Society on SDL and MSC. 1998. Berlin, Germany. 

20. Alur, R., K. Etessami, and M. Yannakakis. Inference of Message Sequence Charts. 22nd 
International Conference on Software Engineering (ICSE'00). 2000. Limerick, Ireland. 

21. Ben-Abdhallah, H. and S. Leue. Syntactic Detection of Process Divergence and Non-Local 
Choice in Message Sequence Charts. Third International Conference on Tools and 
Algorithms for the Construction and Analysis of Systems (TACAS'97). 1997: Springer-
Verlag. 

22. Uchitel, S. and J. Kramer. A Workbench for Synthesising Behaviour Models from 
Scenarios. ICSE 2001. 2001. Toronto, Canada. 

23. Milner, R., Communication and Concurrency. International Series in Computer Science. 
1989: Prentice-Hall. 

24. Magee, J., et al. Graphical Animation of Behaviour Models. 22nd International 
Conference on Software Engineering (ICSE'00). 2000. Limerick, Ireland. 

25. Uchitel, S. and J. Kramer, A Sound Algorithm for Synthesis of Behaviour Models from 
Scenarios. 2001, Department of Computing, Imperial College. London, UK. 


