

Combining UML and SDL

Kurt Verschaeve

System and Software Engineering Lab, Vrije Universiteit Brussel, Pleinlaan 2, B 1050 Brussel,
Belgium. kaversch@info.vub.ac.be

UML and SDL both have their own merits and form a strong alliance when combined in one
methodology. In this paper we describe three scenarios for combining UML and SDL: Forward
Engineering, Reverse Engineering and Round-Trip Engineering. The foundation that makes
these scenarios possible is a profound translation between UML & SDL'96 concepts. We also
explain how the translation is adapted to implement an incremental two-way translation
between UML and SDL.

1. Introduction

SDL (Specification and Description Language) is a high-level specification and programming
language. It is object-oriented, formal, and graphical. SDL is intended for the description of
complex, event-driven, real-time, and communicating systems. Systems described in SDL
consist of many processes running simultaneously which communicate with each other via
signals. Each process is described by an extended finite state machine. SDL [EHS97] is
standardized by ITU-T, as standard Z.100. SDL has a number of advantages compared to other
high-level languages and to traditional low-level languages such as C, C++, or Java. SDL has a
rich grammar that describes behavior and is unambiguous. Therefore, it is possible to build
tools for the simulation of SDL systems and for the validation of formal characteristics, like
deadlock avoidance. The SDL system can be translated into an executable application without
manual coding, leading to shortened development time and increased quality. As a side effect,
due to the readability of SDL diagrams, the SDL specification becomes the documentation in
itself, ensuring simplified maintenance and post-development.

This paper describes the translation of an UML and SDL concepts and three scenario’s how the
mapping can be used to UML and SDL: forward engineering, reverse engineering and roundtrip
engineering. Previous research on combining UML (or OMT) and SDL can be found in
[VJW96], [Ver97] and [Ver99].

Our goal is to get the maximum profit of the advantages of both UML and SDL. UML and SDL
share a number of qualities, like having a graphical notation, good readability and good tool
support. They also incorporate object orientation and state machines, which make UML and
SDL suitable to work together. But each of them also has enough advantages to make it
worthwhile to use them both in one methodology. More specifically, UML provides generic
concepts, has multiple views on the same information and poses little constraints during
modeling with more flexibility. Moreover, there is a smooth transition from use cases,
conceptual model and sequence diagrams to class diagrams and state charts. SDL on the other
hand, provides specialized concepts, has a formal definition and semantics, is simulatable and
executable and provides both a graphical and a textual syntax.

Figure 1 shows the common and unique diagrams and concepts available in UML and SDL. We
come to the same conclusion that UML and SDL is a good alliance. They share the specification
for the static structure, behavior and scenarios. Unique for UML is the use cases and the
collaboration diagrams. In SDL the type specification and the transitions can be implemented in
full detail. Note that UML Sequence Diagrams and MSC’s both are used to specify scenarios,
but are not dealt with in our round-trip engineering solution.

UML

Collaboration
Diagram

Use Cases

SDL

Static Structure

Block
Process
Channel
...

Subsystem
Class

Association
...

Type
Specification

Simulation

Transition
Implementation

Behaviour
Finate
State
Machine

State
Diagram

MSCSequence
Diagram

Figure 1. Comparison of Features of UML and SDL

The cross-section of Figure 1 shows the part of UML and SDL for which we have a translation.
Based on this translation we can build support for three different scenarios:

1. Forward Engineering: This scenario is followed for new projects. The requirements
analysis and system design is done in UML. The system design model is then translated to
SDL, where the development continues with the round-trip scenario.

2. Reverse Engineering: This scenario is followed in the case that there is already an SDL
specification available. The specification is translated to UML, either for documentation
purposes or for reengineer purposes.

3. Round-trip Engineering: After either scenario 1 or 2, there is UML and SDL available for
the same system. From then on the two models are kept synchronous by forwarding the
changes made on the other side.

2. UML to SDL Translation

The mapping and translation between UML and SDL concepts is an essential part of our
research. The mapping definition determines how the information in the UML model relates to
information in the SDL system. Most mappings are syntax oriented, e.g. a UML class maps on
an SDL process, but some mappings are more semantically, e.g. communication between
classes maps on communication between processes. The translation of complete models or
changes in the model is based on this mapping. We illustrate the translation of a full UML
model with an example. We show the UML model of a Toffee Vendor and the resulting SDL
specification after translation.

2.1 Static Structure

The basic building blocks of a model in UML are packages, subsystems and classes, where the
classes represent the active components. In SDL the basic building blocks of a system are

packages, blocks, block types, processes and process types. Another aspect of the static
structure is the relationship between classes. Basically, associations map on communication in
SDL and aggregation maps on nested structure. Figure 2 shows the improved class diagram of
the toffee vendor example.

«newtype»
Cont

«block»
Dialogue

«newtype»
Item

Accept
Close
Coin10
Coin50
Coin100

«process»
Coins

coin:integer
cost:integer
article: Item

Choice(article:Item)
Empty
NonEmpty
Money(value:integer)

«process»
Control

box: Cont
request:Item

Exists(request:Item)
Paid

«block»
Ware Mgr

Ware
Display(text: String)

User

pay pay

outWare outWare

ware control ware control

input 1 input

Figure 2. Static Structure of the Toffee Vendor

Figure 3 and Figure 4 shows the content of the generated toffee vendor system. Figure 3 shows
the signal and type declarations. Two empty newtype declarations are created for the
«newtype» classes Item and Cont. Figure 4 shows the block interaction at the system level. For
every association between two classes, a communication path is generated between the
corresponding processes or process instances. Channels are generated to reroute the
communication path via the first common visible block. In our example, the channel
ware_control is the result of rerouting the association between the classes Control and
Ware_Mgr. The three other channels going to the environment are the result of the associations
to the User class.

SYSTEM ToffeeVendor

SIGNAL Ware;
SIGNAL Display (charstring);
SIGNALLIST User = Ware, Display;
SIGNAL Exists (Item);
SIGNAL Paid;
SIGNALLIST WareMgr = Exists, Paid;
SIGNAL Choice_ (Item);
SIGNAL Empty;
SIGNAL NonEmpty;
SIGNAL Money (integer);

NEWTYPE Item

ENDNEWTYPE Item;
NEWTYPE Cont

ENDNEWTYPE Cont;

WareMgr Control
Figure 3. Signal and Type Declarations in the Generated System

SYSTEM ToffeeVendor

a_WareMgr :
WareMgr

a_Dialogue :
Dialogue

outWare

(User) (WareMgr)
G2

ware_control
(Control)

(WareMgr)

G1

G1
pay

(User) (Coins)
G1

input_

(User) (Control)
G1

BLOCK TYPE Dialogue

a_Control : Control

a_Coins : Coins

G1
(User)

(Control)

G1

G1

G1

ware_control

(WareMgr) (Control)
G2

input_

(User) (Control)
G1

Coins_Control
(Control)

(Coins)

G2

G3

pay

(User) (Coins)
G1

Figure 4. Block and Processing
Interaction

Figure 5. Process Interaction in Dialogue
Block Type

2.2 State Diagrams

The translation of UML state diagrams to SDL state diagrams is rather straight forward, except
for nested state diagrams and entry and exit actions. The UML state diagrams include the notion
of nested hierarchical states, while SDL does not. This is solved by flattening the nested states
and at the same time moves the entry and exit actions to the appropriate transitions. Figure 6
shows an example of a nested UML state diagram and its translation in SDL.

Super

ev1

ev2

Sub1
Sub2

entry/action1
exit/action2

sub1

Sub2

Sub2

ev1

ev2

action2

Super,
Sub1

ev2

action1

Figure 6: Mapping nested UML and SDL State Diagrams

3. Roundtrip Engineering

A one-shot translation of a full UML model to an SDL specification is only the first step. The
next step is the possibility to develop concurrently in UML and SDL whereby both models are
automatically kept synchronized. At each synchronization point, changes made on a higher level
of abstraction are merged with the changes on the more concrete level or the other way around.
The necessity for automated roundtrip engineering between UML and SDL is apparent. Without
this support, maintenance will probably be done on the SDL level only because no one likes to
make the same change twice. By not updating the UML model, it might be unclear what impact a

change has on other parts of the system. Moreover, the UML model gets outdated and it
becomes difficult to maintain the system.

Because is the mapping is not a strict one-on-one mapping, traditional roundtrip engineering
solutions cannot be used. We propose to use a set of translation rules that define how changes in
UML model are translated into changes in the SDL specification and the other way-around.
Some examples of possible changes are: new class, rename operation, delete association, etc.
These changes are automatically detected, translated to SDL (or UML) and applied locally on
the specification with maximal preservation of detailed design changes in SDL. Hierarchical
links between UML and SDL syntactic elements provide the context in the SDL system where to
apply changes. The one-shot translation of a UML model to SDL is then seen as a comparison
with an empty model, i.e. all entities in the model are “new”. This method does not work in the
SDL to UML direction.

4. Conclusions

In this paper we argue that UML and SDL form a good alliance. Not only can UML contribute to
the development of SDL based systems, SDL is also a good candidate to implement event-
driven systems that are modeled in UML. Both the UML class diagrams and the state diagrams
are mapped onto SDL concepts, which strengthen the cooperation.

The mapping definition forms the basis for a translation for UML to SDL and the other way
round and for tool support for synchronizing a UML model and an SDL specification. This in
turn makes it possible to combining UML and SDL is three scenarios: forward engineering,
reverse engineering and round-trip engineering. To allow roundtrip engineering, we propose to
translate changes instead of the full model as one piece. A large set of translation rules is
necessary to translate any kind of change, e.g. class rename. The current state of our research is
that we have over 180 rules to translate UML changes to SDL and about 70 rules to translate
changes in SDL back to UML.

In the future UML and SDL will continue to grow toward each other. SDL 2000, not covered in
this paper, really targets the integration with UML. For example, the SDL specification can
partially be presented with UML syntax. Also some annoying restriction are be removed like
the fact that block and process cannot be next to each and the difference between channel and
signal route disappeared.

5. References

[EHS97] J. Ellsberger, D. Hogrefe, A. Sarma. SDL, Formal Object-Oriented Language for
Communicating Systems. Prentice Hall, London, 1997.

[Ver97] Kurt Verschaeve. Automated Iteration between OMT* and SDL. 8th SDL Forum,
Paris, 1997.

[Ver99] Three Scenarios for Combining UML and SDL'96, K. Verschaeve, A. Ek, Eighth
SDL Forum, Montréal, Canada, 1999.

 [VJW96] K. Verschaeve, V. Jonckers, B. Wydaeghe, L. Cuypers. Translating OMT* to SDL,
Coupling Object-Oriented Analysis with Formal Description Techniques. Method
Engineering 96 proceedings, p.126-141. IFIP, Atlanta, USA, 1996.

