
SLAPP (Swarm-Like Protocol in Python)
Reference Handbook

Pietro Terna
mailto:pietro.terna@unito.it

August 31, 2015

mailto:pietro.terna@unito.it

Contents

1 Introduction 4
1.1 SLAPP and Swarm . 4
1.2 The README and related files: discovering two ways of using SLAPP 4

1.2.1 Using SLAPP as a tutorial on agent-based programming . . 5
1.2.2 Using SLAPP as an agent-based shell 6

2 The basic project as a guide to the making of a new project 11
2.1 Scheduling . 14

2.1.1 The scheduling mechanism at the level of the Observer . . . 14
2.1.2 The scheduling mechanism at the level of the Model 16
2.1.3 The detailed scheduling mechanism within the Model (AE-

SOP level) . 20
2.2 The agents and their sets . 25

2.2.1 Sets of agents . 26
2.2.2 Future developments about agents 27

3 Other existing and upcoming projects 28
3.1 From the basic to the school project 28
3.2 Adding networks: the production project 28
3.3 New projects and extensions . 28

3.3.1 Connecting to R, via Rserve 28
3.3.2 Connecting to other applications, via Redis 28

4 SLAPP in IPython 29
4.1 Running SLAPP in an IPython notebook 29
4.2 A temporary problem with IPython running as a notebook 29
4.3 Turtle graphics and IPython . 30

Appendices 31

1

Preliminary Draft. Comments and Corrections Welcome!

A Libraries for SLAPP 32
A.1 Using Linux (e.g., via the Ubuntu distribution) 33
A.2 Using Mac OS X . 34
A.3 Using Windows (referring to Windows 10) 35

B On turtles 37

Bibliography 39

Index 40

2

Preliminary Draft. Comments and Corrections Welcome!

List of Figures

1.1 Starting the basic project . 7
1.2 The output of the basic project . 7
1.3 Starting the school project . 8
1.4 The plain text output of the school project 8
1.5 The graphical output of the school project 9
1.6 Starting the production project . 9
1.7 The plain text output of the production project 10
1.8 The graphical output of the production project 10

2.1 The idea of the schedule . 13

B.1 The Logo Foundation, at
http://el.media.mit.edu/logo-foundation/ 38

3

http://el.media.mit.edu/logo-foundation/

Preliminary Draft. Comments and Corrections Welcome!

Chapter 1

Introduction

1.1 SLAPP and Swarm
SLAPP, as Swarm-Like Protocol in Python, is both a tutorial about agent-based
coding and a shell to run large simulation projects, having in mind the original
Swarm1 scheme.

The repository of SLAPP is at https://github.com/terna/SLAPP.
To read more about Swarm and SLAPP and to examine several SLAPP appli-

cations and . . . a lot more, you can make reference to Boero et al. (2015).

1.2 The README and related files: discovering
two ways of using SLAPP

The GitHub repository of SLAPP contains several README files, created with quite
different purposes. In the main folder of the repository, you have following intro-
ductory files.

• The _readmeFirst.txt file clarifies the content of the whole project.

Here we have both a tutorial and an agent-based simulation shell, coming
from the Swarm (http://www.swarm.org) project, and named SLAPP for
Swarm-Like Agent Protocol in Python.

You can find SLAPP as an Agent-based Model (ABM) shell, in the folder
number 6.

1About Swarm, have a look to Minar et al. (1996). You can access Swarm website via
http://www.swarm.org. The project started at the Santa Fe Institute (first release: 1994) and
represented a milestone in agent-based simulation.

4

https://github.com/terna/SLAPP
http://www.swarm.org
http://www.swarm.org

Preliminary Draft. Comments and Corrections Welcome!

Both the basic scheme of the tutorial, and all the files with the Swarm_original
prefix in their names, are coming from the tutorial that was distributed by
the Swarm Development Group via the swarmapps file (the last version, that
we use here, is swarmapps-objc-2.2-3.tar.gz).

Those files are unmodified, but the correction of a few typos.

We can find them on line at http://download.savannah.gnu.org/releases/
swarm/apps/objc/sdg/swarmapps-objc-2.2-3.tar.gz or at http://nongnu.
askapache.com/swarm/apps/objc/sdg/swarmapps-objc-2.2-3.tar.gz or
at http://eco83.econ.unito.it/terna/swarm/swarmapps-objc-2.2-3.tar.
gz

• The README.md file, written using Markdown2, underlines that we have two
possibile ways of using SLAPP: both as a tutorial on agent-based program-
ming (see Section 1.2.1) or as an agent-based shell (see Section 1.2.2).

1.2.1 Using SLAPP as a tutorial on agent-based program-
ming

• To study the tutorial, read the content of the file SLAPP tutorial.txt.

• The file SLAPP tutorial.txt guides the user through the development of a
SLAPP model that makes use of a lot of the functionalities of Swarm.

The model refers to the movement of a bug, randomly walking in a 2D space.

We start introducing a very simple, essentially plain program, about that
bug taking a random walk. Through a progression of models, we introduce
basic object-oriented and Swarm style programming.

Although this is a quite simple exercise, it shows how easy it is to compose
fairly complex software from simple building blocks.

In this folder, we have several subfolders, each with a complete application
and a README file that helps you to walk through the code.

You should start with the 1 plainProgrammingBug folder, and then proceed
in the following order (the start files have a number correspondent to that
of their folder):

1 plainProgrammingBug

2 basicObjectProgrammingBug

3 basicObjectProgrammingManyBugs

2http://whatismarkdown.com

5

http://download.savannah.gnu.org/releases/swarm/apps/objc/sdg/swarmapps-objc-2.2-3.tar.gz
http://download.savannah.gnu.org/releases/swarm/apps/objc/sdg/swarmapps-objc-2.2-3.tar.gz
http://nongnu.askapache.com/swarm/apps/objc/sdg/swarmapps-objc-2.2-3.tar.gz
http://nongnu.askapache.com/swarm/apps/objc/sdg/swarmapps-objc-2.2-3.tar.gz
http://eco83.econ.unito.it/terna/swarm/swarmapps-objc-2.2-3.tar.gz
http://eco83.econ.unito.it/terna/swarm/swarmapps-objc-2.2-3.tar.gz
http://whatismarkdown.com

Preliminary Draft. Comments and Corrections Welcome!

4 basicObjectProgrammingManyBugs_bugExternal_+_shuffle

5 objectSwarmModelBugs

6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX

7 (toBeDeveloped_aFewHints)

• We used Python to write the tutorial: you can find a lot of wonderful re-
sources introducing the Python language. I suggest Downey (2012), a book
that you can also read online at the address reported in the references; the
book also exists in a slight different version as a learning interactive tool
(Elkner et al., 2013). An alternative way to start learning Python is the
introductory part of the wonderful online book of Sargent and Stachurski
(2013) on quantitive economics. (There, you can also find an introduction
to Julia, a quite new and highly powerful language.)

• We report here the file Swarm_original README in tutorial folder.txt,
related to the original tutorial. The file is in the main folder of the repository.

Note that the names of the txt files here and in the subfolders start with
SLAPP or Swarm_original. This choice is just to underline if we are refer-
ring the recent reformulation in Python or to the original one of Swarm.
(Swarm was based on Objective C3 and successively also partially on Java;
the tutorial was strictly in Objective C).

1.2.2 Using SLAPP as an agent-based shell

• To start running the agent-based shell, read the content of the file:
SLAPP shell.txt
and install the required libraries (here you have the necessary explanations
in Appendix A).
Then open a terminal, go into the SLAPP main folder, then to the folder:
6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX
(or simply cd 6 and then tab) and:

1 - launch the application basic as in the following window:
3https://en.wikipedia.org/wiki/Objective-C

6

https://en.wikipedia.org/wiki/Objective-C

Preliminary Draft. Comments and Corrections Welcome!

Figure 1.1: Starting the basic project

The effect is (plain text output only):

Figure 1.2: The output of the basic project

2 - launch the application "school" as in the following window:

7

Preliminary Draft. Comments and Corrections Welcome!

Figure 1.3: Starting the school project

The effect is (plain text output):

Figure 1.4: The plain text output of the school project

and as graphical output:

8

Preliminary Draft. Comments and Corrections Welcome!

Figure 1.5: The graphical output of the school project

3 - launch the application "production" as in the following window:

Figure 1.6: Starting the production project

9

Preliminary Draft. Comments and Corrections Welcome!

The effect is (plain text output):

Figure 1.7: The plain text output of the production project

and as graphical output:

Figure 1.8: The graphical output of the production project

10

Preliminary Draft. Comments and Corrections Welcome!

Chapter 2

The basic project as a guide to the
making of a new project

The basic project (in Section 1.2.2 you read how to launch it and the results as
outputs) is introduced to familiarize with SLAPP.

Now, we introduce the starting phase in a detailed way.

• In the SLAPP distribution, we have a basic folder4, containing the intro-
ductory application that we illustrate here.

Launching SLAPP, via the unique Python file that we find in the main folder
of SLAPP when used as a simulation shell, i.e.
6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX, from a ter-
minal, with:
python start.py
We immediately receive the request of choosing a project:
Project name?

• In our case, we reply basic (or school or production, for the other exam-
ples). To create a new project, we simply add a new folder; the folder name
will also be automatically that of the project, and we will choose it at the
prompt above.

We have also a special folder, named $$slapp$$,5 that the user is not sup-
posed to modify. It is the folder where we store the kernel of SLAPP. If you
do not modify it, building your applications in separate folders, your work
will not be affected by the modifications introduced by the new versions of
SLAPP.

4Within the 6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX folder.
5Always within 6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX.

11

Preliminary Draft. Comments and Corrections Welcome!

• Predefining a default project If we place in folder
6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX
a file named project.txt containing the path to a folder (basicTmp as an ex-
ample, so with the path the content of the file is /Users/pt/Desktop/basicTmp),
the initial message of SLAPP will be:

path and project = /Users/pt/Desktop/basicTmp
do you confirm? ([y]/n):

The feature is useful in two perspectives: (i) we can place our projects outside
the SLAPP folder; (ii) we can avoid to typing the name of the project when,
in the debugging phase, we launch it a lot of times.

• Resuming the explanation: with the reply basic, we obtain:

running in Python
debug = False
random number seed (1 to get it from the clock)

We have to enter an integer number (positive or negative) to trigger the
sequence of the random numbers used internally by the simulation code. If
we reply 1, the seed—used to start the generation of the random series—
comes from the internal value of the clock at that instant of time. So it is
different anytime we start a simulation run. This reply is useful to replicate
the simulated experiments with different conditions. If we chose a number
different from 1, the random sequence would be repeated anytime we will
use that seed. This solution is useful while debugging, when we need to
repeat exactly the sequence generating errors, but also to give to the user
the possibility of replicating exactly an experiment.

The running in Python sentence signals the we are running the program
in plain Python. Alternatively, the message could be running in IPython,
as in Chapter 4.

• Then the code asks us to enter the number of unspecified agents; this is
related to the AESOP (Agents and Emergencies for Simulating Organizations
in Python) perspective, introduced below as an abstract layer upon SLAPP.
There we have both well-defined agents (tasty) and unspecified ones (bland).

How many ’bland’ agents?

Finally, after a few information, we have to enter the number of the cycles
we want:

12

Preliminary Draft. Comments and Corrections Welcome!

X size of the world? 50
Y size of the world? 50
How many cycles? (0 = exit)

Replying 2 as the number of bland agents and 4 as the number of cycles, we
obtain the output reported (only the final part) in Figure 1.2.

• We introduce now time management, split into several (consistent) levels of
scheduling.

The general picture is that of Figure 2.1: in an abstract way we can imagine
having a clock opening a series of containers or boxes. Behind the boxes, in
SLAPP, as it was in Swarm, we have the action groups, where we have the
information about the actions to be done.6

Figure 2.1: The idea of the schedule

Imagining the events as objects, in the object-oriented programming per-
spective, is one of the key points of success in the original Swarm system.
We implemented the same idea in SLAPP.

6The structure is highly dynamical because we can associate a probability to an event, or an
agent of the simulation can be programmed to add or eliminate one o more events into the boxes.

13

Preliminary Draft. Comments and Corrections Welcome!

2.1 Scheduling
In SLAPP, we have the following three schedule mechanisms driving the events.

• Two of those mechanisms are one at the level of the Observer and the other
of the Model, with recurrent sequences of action to be done.7

• In our basic code, these sequences are reported in the files
observerActions.txt and
modelActions.txt
in folder basic.8

2.1.1 The scheduling mechanism at the level of the Observer

.

• To discover the first schedule mechanism, we refer to the first file
(observerActions.txt), containing (row changes are not relevant):

modelStep ask_all clock
modelStep ask_one clock
modelStep ask_one clock

The interpretation is the following.

– First of all, we have to take into consideration that the execution of the
content of the file is “with repetition”, until and end item will appear
(see below). If we do not need differentiations, also a content as the
following should work:

modelStep ask_all clock

However, the content can be as articulated as we need.

– modelStep orders to the model to make a step forward in time. The
order has its effect via the file ObserverSwarm.py9, where we have (ex-
ample i) a simple rule ordering to the Model code to make a step.

7The level of the Observer is our level, where the experimenter looks at the model (the level
of the Model) while it runs. This structure is a key feature in Swarm, and so it is reported in
SLAPP. Other simulation shells follows the same scheme: as an example, the observer is a key
feature in NetLogo https://ccl.northwestern.edu/netlogo/.

8Within folder 6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX.
9Which is in the "$$slapp$$" folder (see above in this Chapter).

14

https://ccl.northwestern.edu/netlogo/

Preliminary Draft. Comments and Corrections Welcome!

– ask_all orders to all the agents to talk. In this case, always in Ob-
serverSwarm.py, we have (example ii) one of the four stable instances10

of the class ActionGroup within the Observer. That related to ask_all
contains the do2a variable, linking a method which is specified as a
function in the file oActions.py in the folder basic. In this way, the
application of the basic method ask_all can be flexibly tailored to the
specific applications.

– clock ask the clock to increase its counter of one unit. When the count
will reach the value we have entered replying to the How many cycles?
query, the ActionGroup instance (example iii) related to the clock
(actionGroup1 in ObserverSwarm.py) will add the end item into the
sequence of the file observerActions.txt. The item is placed imme-
diately after the clock call; end stops the repetitions in executing the
sequence contained in the file.

– ask_one orders to the first component of the agent collection to talk.
As above (example ii, being this the example iv), we have a similar
instance of the class ActionGroup within the Observer. That related to
ask_one contains the do2b variable, linking a method which is specified
as a function in the file oActions.py in the folder basic. In this way,
the application of the basic method ask_one can be flexibly tailored to
the specific applications.

– It is useful to underline that the example (i) has no reference in the
file oActions.py. We can add similar items for the scheduling, directly
“wiring” them via the function
def otherSubSteps(subStep, address):
in oActions.py, without modifying
ObserverSwarm.py in $$slapp$$
(look at the production project to see how, about pause and prune).

• The examples (ii), (iii), and (iv) use the double structure of the instance of
the class ActionGroup and of the related method11 construction that we have
in ObserverSwarm.py (in $$slapp$$), with the definition in oActions.py
in folder basic (in our current case). It is a more complicated structure, but
very flexible.

10The instances of the class ActionGroup contained in the file ActionGroup.py in folder
$$slapp$$ are related to: “clock”; “visualizeNet”, used with network analysis; “ask_all”; and
“ask_one”.

11Technically, our pseudo-methods—that we pass to the instance via a variable—are always
functions. So, we have to manage explicitly the value of the usual self value. To avoid any
possible confusion, the term used in these cases—into the SLAPP code—is address.

15

Preliminary Draft. Comments and Corrections Welcome!

• Looking at the oActions.py files of the other projects (currently, school
and production currently), you can analyze the different ways of using the
options (i), (ii), (iii), and (iv).

• If we use a missing keyword in the files collecting the first two levels of
scheduling, i.e. observerActions.txt or modelActions.txt—maybe as an
error or referring to a not jet implemented item—we receive a warning as
above, where the item ask_one is misspelled:
Warning: step ask_on not found in Observer

2.1.2 The scheduling mechanism at the level of the Model

.

• The second file—modelActions.txt—quoted above at the beginning of Sec-
tion 2.1, is related the second of the schedule mechanisms introduced there:
that of the Model. About the Observer/Model dualism, the reference is to
note 7.

It contains (unique row, remembering that row changes are not relevant to
this group of files):

reset move read_script

The interpretation is the following.

– Also at the Model level, we have to take into consideration that the
execution of the content of the file is “with repetition”, never ending. It
is the Observer that stops the experiment, but operating at its level.

– reset orders to the agents to make a reset, related to their variables.
The variables can be specified as explained in the next few rows. The
order acts via the file ModelSwarm.py12. In this case, always in Model-
Swarm.py, we have (example I) one of the three stable instances13 of the
class ActionGroup within the Model. That related to reset contains
the do0 variable, linking a method that is specified as a function in the
file mActions.py in the folder basic. In this way, the application of the
basic method reset can be flexibly tailored to the specific applications,
defining which variables to reset.

12That is in the "$$slapp$$" folder (see above in this Chapter).
13The instances of the class ActionGroup contained in the file ActionGroup.py in folder

$$slapp$$ are related to: “reset”; “move”; and “read_script”

16

Preliminary Draft. Comments and Corrections Welcome!

In our specific case, the content of the do0 function in mActions.py
asks all the agents to execute the method setNewCycleValues. The
method is defined in an instrumental file (agTools.py in $$slapp$$)
and is as default doing nothing. We can redefined it in Agent.py in the
project folder. So reset is not operating, but it is reported above as a
memo for future uses.
The case is strictly similar to the examples ii and subsequent ones,
above (Section 2.1.1).

– move orders to the agents to move. The order acts via the file Model-
Swarm.py. We have here (example II) the second of the three stable
instances of the class ActionGroup within the Model. That related to
move contains the do1 variable, linking a method that is specified as
a function in the file mActions.py in the folder basic. In this way,
the application of the basic method move can be flexibly tailored to the
specific applications, defining what kind of movement (if any) we want
from agents.
In our specific case, the content of the do1 function in mActions.py asks
all the agents to execute the method randomMovement. We defined the
method in the file Agent.py in the project folder.
The case is strictly similar to the examples ii and subsequent ones,
above (Section 2.1.1).
The structure managing the movement is quite complicated, just to
propose a fruitful example.
The Python code (in mActions.py) launching the movement is:

askEachAgentInCollectionAndExecLocalCode \
(address.agentListCopy, Agent.randomMovement,

jump=random.uniform(0,5))

A few details:

∗ address substitutes the implicit usual self as explained above in
Section 2.1.1;

∗ agentListCopy is a shuffled copy to ask the agent to move in an
ever-changing sequence;

∗ Agent.randomMovement is the address (within the class) of the
method that we send to the agent list;
an example helps to clarify (we are here using Python interactively,
in a shell:

17

Preliminary Draft. Comments and Corrections Welcome!

>>> class A:
def __init__(self,b):

self.b=b
def prnt(self):

print self.b
>>> a=A(10)
>>> aa=A(100)
>>> a.prnt()
10
>>> aa.prnt()
100
>>> A.prnt
<unbound method A.prnt>
>>> A.prnt(a)
10
>>> A.prnt(aa)
100

∗ jump=random.uniform(0,5) is optional; if it is placed there, it
assigns a random value to a dictionary key named jump.

The method randomMovement defined in Agent.py in folder basic of
this example, is defined with an optional14 dictionary in the head, as:

def randomMovement(self,**k):

The call to the method assigns a default value to the key jump; the
method verifies its existence;

self.jump=1
if k.has_key("jump"): self.jump=k["jump"]

14 The optional dictionary works as in the following example (created interactively in a
Python shell):
>>>class A:

def test(self,**k):
self.b=1
if k.has_key(’b’):self.b=k[’b’]

>>> a=A()
>>> a.test()
>>> a.b
1
>>> a.test(b=10)
>>> a.b
10

18

Preliminary Draft. Comments and Corrections Welcome!

The value of the jump multiplies the length of the movement.
– read_script orders to the Model to open a new level of scheduling,

described in Section 2.1.3. The order acts via the file ModelSwarm.py.
We have here (example III) the third of the three stable instances of the
class ActionGroup within the Model. That related to read_script, the
actionGroup100 contains directly the do100 function, used internally
within the Model.

• The method randomMovement defined in Agent.py in folder basic of this
project, is also interesting because it introduces the feature of the local code
execution.

The code is:

if int(self.number/2)*2 == self.number:
oddEven = "print ’my number is even’"

else: oddEven = "print ’my number is odd’"
setLocalCode("print ’agent %s # %d made a big jump’;"\

% (self.agType,self.number) +\
oddEven)

We use the function setLocalCode of Tools.py (in $$slapp) to define a
code to be executed “on the fly” by the function
askEachAgentInCollectionAndExecLocalCode
of Tools.py. The function simply runs:

exec(localCode)

having received the code to be executed (if you want to replicate this kind
of code implementation, have a look both to the function and to its internal
links). In this way, we have a flexible and powerful way for building activities
in our agents.

We can employ the local code execution also within the agents’ methods used
in the third scheduling mechanism described in Section 2.1.3.

• The cases (I), (II) shown above are conceptually similar to the cases (ii)
and subsequent ones, seen above (Section 2.1.1); instead, the case (III) is
quite special.

We can also have schedule structures as the i above (always Section 2.1.1,
adding the code after
def otherSubSteps(subStep, address):
in mActions.py. We have an example of this solution in the project production.

19

Preliminary Draft. Comments and Corrections Welcome!

2.1.3 The detailed scheduling mechanism within the Model
(AESOP level)

.

• The third scheduling mechanism, as anticipated in Section 2.1, is based on
a detailed script system that the Model executes while the time is running.
The time is managed by the clock item in the sequence of the Observer.

The script system is activated by the item read_script in the sequence of
the Model.

• This kind of script system does not exist in Swarm, so it is a specific fea-
ture of SLAPP, introduced as implementation of the AESOP (Agents and
Emergencies for Simulating Organizations in Python) idea: a layer that is
describing in a fine-grained way the actions of the agents in our simulation
models.

• Let us deepen the scheduling hierarchy, with the three levels:

– at the Observer level (via the file observerActions.txt) we run a
high level sequence of events: (a) one of the events is the request to the
Model of making a step (modelstep) and (b) another is the request to
the clock to go by;

– at the Model level (via the file modelActions.txt) we run a medium
level sequence of events (a sub-cycle within the previous one): one of
the events is now the request (readScript) to the fine-grained scripting
system (if any) to execute the action container related to the time step
we are in;

– at the AESOP level (i.e. within the Model detailed scripting system)
we activate the set of rules and actions introduced in this Section.

• At the AESOP layer, the action containers are specified—with the # indica-
tors (see below)—upon the time; we put them into a spreadsheet describing
the actions and the subjects doing them.

We adopt the spreadsheet formalism because it is well known and diffused,
but you can bypass it creating directly a text file containing the same ele-
ments, as explained below.

Other details are in the files SLAPP 6 objectSwarmObserverAgents.txt
and a_note_on_AESOP.txt in the usual folder
6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX.

20

Preliminary Draft. Comments and Corrections Welcome!

• Now we take in a detailed exam an example of AESOP layer schedule (the
third layer), i.e. the timetable where we describe minutely the actions that
the agents are doing at each time step.

• The file schedule.xls can be composed of several sheets, with: (a) the first
one with name schedule; (b) the other ones with any name (those names
a macro names.15 We can recall the macro instructions in any sheet, but
not within the sheet that creates the macro (that with the same name of the
macro), to avoid infinite loops.

We start with the sheet in scheduleBase.xls of folder basic. To use a
sheet, you have to rename it to schedule.xls (keep safe the original file).

Within the sheet, we have the action containers as introduce above, starting
with the sign #.
In scheduleBase.xls we have (comments start at column E):

COL. E

comments here or in successive columns
1 standard (background) actions, like move, are applied to "all"
bland eat bland agents are those not specified in dedicated .txt files,
bland dance with the related names reported in the agTypeFile.txt file
2
4
all 0.5 dance all agents acting
tasteC eat tasteC agents acting
5
all eat
all dance
7
tasteA 0.5 dance tasteA agents acting
8
tasteB dance tasteB agents acting (no agents of this type exist here)

• In column A, we can place: (i) the sign # or (ii) the word macro or (iii) a
name identifying a group of agents (the number of the agents in the group
can vary from 1 to any value; about the groups, see Section 2.2.1):

– with # (action container), we state that, when the clock reaches the
time (in units of the conventional internal clock of the model) set in
column B, the content of the rows16 following that containing the # sign
and until the next similar sign, will be executed;

– with a macro name, we indicate that at a given time, SLAPP will
activate the set of instructions reported in a specific sheet; see below
for macros;

15We deeply use macros in project school.
16Maybe none, or: (i) one or more, empty; (ii) one or more, with operating contents.

21

Preliminary Draft. Comments and Corrections Welcome!

– with a name identifying a set of agents17 in column A, we send to
this/these agent/s the method (as an action to be done) set in col-
umn B in a deterministic way; if in column B we have a number, this is
the probability (related to 1) of execution of the method, in this case,
reported in column C;

∗ the probability can be interpreted both as: (a) the share of the set
of agents—recalled in column A—requested to act; or (b)—which is
quite the same—as the probability of each individual of the same
list to be in turn of executing the action;

∗ if the number in column B is both less than "0" and integer, exactly
that number (multiplied times −1 to have it positive) of agents is
asked to execute the actions; the agents are randomly extracted
from the list. We use this feature both in project school and in
project production.

• The containers of action identified by the # sign can be also introduced in a
nonsequential way into each sheet of the spreadsheet If we repeat the same
time pair in the same sheet, only the last one is kept. The # sign can be
employed into the macro sheets (also repeating a # time place card already
existing in another sheet); when the macro is called, the content of those
time blocks is properly placed in the related time steps, orderly (e.g., a block
coming from the third sheet will be placed after a block coming from the
second and before a block coming from the fourth sheet).

Time loops : we can also manage time loops using a block such as

1 3
somethingA
somethingB

that will be internally transformed to

1
somethingA
somethingB
2
somethingA
somethingB

17Both coming from the agTypeFile.txt list or from the agOperatingSets.txt one; in this ex-
ample we do not have operating sets.

22

Preliminary Draft. Comments and Corrections Welcome!

3
somethingA
somethingB

It is not possible to use the time loops feature operating directly into the
schedule.txt file. Sure, we can repeat block using copy and paste and
modifying by hand the variable parts.

• We also have a more complicated schedule in the file scheduleBaseWithMacros_WorldState.xls
(to be copied to schedule.txt for the use), where we employ both the World-
State feature and macros.
Running a project, at the beginning of the output, we read:

World state number 0 has been created.

What does it mean?
The WorldState class, interactics with the agents; at present, in the ’basic’
case and in the other ones, we have a unique instance of the class, but
the code is any way built upon a list of any number of instances of the
class. The variables managed via WordState have to be added, with their
methods, within the class, following the existing example in project ’basic’,
where WorldState has set/get methods for the variable generalMovingProb.
In Agent.py of basic the method randomMovement asks to the WorldState
the probability threshold to be compared with a random value, to decide to
move. By construction the default threshold is 1 (move always); if we modify
it to 0.1 as in the example below, movements will a lot less frequents.
In scheduleBaseWithMacros_WorldState.xls we have:

– in sheet schedule (comments not reported here)
1
bland eat
bland dance
2
4
all 0.5 dance
tasteC eat
WorldState 0.1 setGeneralMovingProb
5
all eat
all dance
7
tasteA 0.5 dance
8
tasteB dance

macro repeat

macro dancing

23

Preliminary Draft. Comments and Corrections Welcome!

– in sheet dancing
9
all dance
10
tasteC dance

– in sheet repeat
5 10
tasteA eat

• In the example we have also the use of macros (as for time loops, macros
cannot be programmed directly in the file schedule.txt.

In the example above we have to macros, defined in the sheets dancing and
"repeat". The effect in file schedule.txt follows. (NB, the call to a macro
can be repeated, mainly if the macro has no time reference via # sign).

• The content of the file schedule.txt with the effects of the macros:

1
bland eat
bland dance
2
4
all 0.5 dance
tasteC eat
WorldState 0.1 setGeneralMovingProb
5
all eat
all dance
tasteA eat
6
tasteA eat
7
tasteA 0.5 dance
tasteA eat
8
tasteB dance
tasteA eat
9
tasteA eat
all dance
10
tasteC dance

• If structures can be easily implemented, as in the school project, where the
file scheduleIf.xls (in sheet checkToObtainAttention) contains the row:

saPupil shakeIf_greenPupil

The method shakeIf_greenPupil is developed on Agent.py in folder school.
It orders to the agents of type saPupil (a unique one, in this case) to shake
but only if at least one of the agents of the group greenPupil has been shaking
(verified checking their last executed method).

24

Preliminary Draft. Comments and Corrections Welcome!

2.2 The agents and their sets
We have files containing the agents of the different types. Those files are listed
in a file with named agTypeFile.txt: in our case, it simply contains the record
tasteA tasteB tasteC. The names have no interpretation here; this is just an
example.

• tasteA.txt lists the agents of type (“taste”) A; in our case it reports only
the identification numbers:

111
222

• tasteC.txt lists the unique agent of type (“taste”) C, with the identifying
number:

1111

• tasteB agent are missing, so we have no file tasteB.txt; lacking the file,
we receive the message:

No tasteB agents: lacking the specific file tasteB.txt

Instead, a tasteB.txt file empty (zero bytes or containing a few spaces) in
the folder, would eliminate the message above. The program will raise no
errors in the execution in any case.

The agents are created by ModelSwarm.py (in folder $$slapp$$) via the appli-
cation specialized file mActions.py (in folder basic).

def createTheAgent(self,line,num,leftX,rightX,bottomY,topY,agType):
#explictly pass self, here we use a function
#print "leftX,rightX,bottomY,topY", leftX,rightX,bottomY,topY

if len(line.split())==1:
anAgent = Agent(num, self.worldStateList[0],

random.randint(leftX,rightX),
random.randint(bottomY,topY),
leftX,rightX,bottomY,topY,agType=agType)

self.agentList.append(anAgent)

else:
print "Error in file "+agType+".txt"
os.sys.exit(1)

25

Preliminary Draft. Comments and Corrections Welcome!

Each project has an analogue structure dedicated to its agents.
The following bullets describe how this code works.

• As an ex-ante information, the identifying number of the agent is read outside
this function, as a mandatory first element in the lines of any file containing
agent descriptions. Also, the content of the agType variable is coming from
outside, being the name of the agent file currently open.

• We check the input file, which has to contain a unique information per row.

Each agent is added to the agentList.

2.2.1 Sets of agents

The files containing the agents are of two families, the second one with two types
of files:

• files listing the agents with their characteristics (if any): in folder basic we
have the files tasteA.txt and tasteC.txt;

• files defining groups of agents:

– the list of the types of agents (mandatory; from this list SLAPP searches
the file describing the agents (first bullet here above); in folder basic
we have the file agTypeFile.txt (the name is fixed) containing:

tasteA tasteB tasteC

– the list of the operating sets of agents (optional); in folder basic this
file is missing. Indeed we receive the message
Warning: operating sets not found.
In school project we have the file agOperatingSets.txt (the name is
fixed), with content:

threeGreen leftS rightS r1l r2l r3l r1r r2r r3r r4r
lRow cZone 1Pupil 2Pupil 3Pupil 4Pupil 5Pupil
6Pupil 7Pupil 8Pupil 9Pupil 10Pupil 11Pupil
12Pupil 13Pupil 14Pupil 15Pupil 16Pupil 17Pupil
18Pupil 19Pupil 20Pupil 21Pupil

All the names contained in the file are related to other .txt files report-
ing the identifiers of agents specified in the lists of the previous bullet.
The goal of this feature is that of managing clusters of agents, recalling
them as names in Col. A in Section 2.1.3.

26

Preliminary Draft. Comments and Corrections Welcome!

2.2.2 Future developments about agents

Currently, we have a unique Agent class for each project, containing heterogeneous
methods addressed to different types of agents. The agent types are specified as
in Section 2.2.1, so anything is working, but from the coding point of we this
construction is a bit annoying.

Look at project "production" to see how we logically subdivide the unique class
of the agents.

SLAPP 2.0 will introduce the possibility of having any number of classes for the
agents, with internal modification: (a) in the AESOP mechanism (read_script
execution), but also (b) at the higher level of Model scheduling, when a function
like askEachAgentInCollection (of Tools.py) is internally used.

27

Preliminary Draft. Comments and Corrections Welcome!

Chapter 3

Other existing and upcoming
projects

3.1 From the basic to the school project
We add here turtle graphical capabilities. TO BE DEVELOPED.

About the name (turtle), have a look at Appendix B.

3.2 Adding networks: the production project
TO BE DEVELOPED.

3.3 New projects and extensions

3.3.1 Connecting to R, via Rserve

TO BE DEVELOPED.

3.3.2 Connecting to other applications, via Redis

TO BE DEVELOPED.
Redis is at http://redis.io.
We can—as an example—connect an SLAPP model to a NetLogo one (NetLogo

address in Appendix B).

28

http://redis.io

Preliminary Draft. Comments and Corrections Welcome!

Chapter 4

SLAPP in IPython

4.1 Running SLAPP in an IPython notebook
SLAPP runs in IPython.

To use it as a notebook go to the specific folder (as above, substituting YOUR-
PATH and upgrading version number if necessary)):

%cd YOURPATH/SLAPP-v.1.0/6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX
%matplotlib notebook
%run start.py

We do not explain here how to install Jupiter (https://jupyter.org) and
IPython (http://ipython.org), but the suggestion of a short cut, installing the
Anaconda Scientific Python distribution that you can find at https://store.
continuum.io/cshop/anaconda/.

We also plan to have a SLAPP version running on line.

4.2 A temporary problem with IPython running
as a notebook

With the current version of Matplotlib (1.3.4), if SLAPP runs in a notebook, via
IPython, we have an annoying warning message when producing graphics.

To avoid it put in anaconda/lib/python2.7/site-packages/matplotlib (sup-
posing to use Anaconda distribution) the patched file text.py that you find in the
main folder of the SLAPP GitHub (https://github.com/terna/SLAPP); before
copying, rename your existing text.py file. My changes are after Pietro Terna’s correction
sign.

29

https://jupyter.org
http://ipython.org
https://store.continuum.io/cshop/ anaconda/
https://store.continuum.io/cshop/ anaconda/
https://github.com/terna/SLAPP

Preliminary Draft. Comments and Corrections Welcome!

4.3 Turtle graphics and IPython
Turtle graphics does not work in an IPython notebook (maybe in the future,
existing several projects in that direction); the turtle display is generate outside
the notebook. To run SLAPP on line, a possible solution is that of opening a
VNC18 connection parallel to the notebook interaction. More to come.

18https://en.wikipedia.org/wiki/Virtual_Network_Computing.

30

https://en.wikipedia.org/wiki/Virtual_Network_Computing

Appendices

31

Preliminary Draft. Comments and Corrections Welcome!

Appendix A

Libraries for SLAPP

Libraries for SLAPP
To use Python you need to install a few libraries.
An easy way to have anything installed at once, is the Anaconda Scientific

Python distribution that you can find at https://store.continuum.io/cshop/
anaconda/, with clear instruction to download and install the distribution. Ana-
conda comes with installers for Python 2.7 and 3.4: for SLAPP chose Python
2.7.

After the installation, your environment variable (PATH in Mac OS and Linux;
PATH o path in Windows)19 will contain the information to use Python and
Ipython from the anaconda folder (usually in the user home) and its subfolders.

If you do not want to use Anaconda distribution, the do it yourself way is
possibile.

19It is possible to see the content of the path from the terminal (Command Prompt or
Windows PowerShell in Windows) with:
echo $PATH
in Linux/Mac OS terminal
set path
in Command Prompt of Windows
$env:Path
in Windows PowerShell of Windows.

It is highly useful to familiarize with the Unix-like commands of the Linux/Mac OS terminal and
Windows PowerShell, e.g., at https://en.m.wikipedia.org/w/index.php?title=Command-
line_interface&redirect=no and with the DOS-like commands of Command Prompt of
Windows, e.g., at http://pcsupport.about.com/od/termsc/p/command-prompt.htm.

32

https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/
https://en.m.wikipedia.org/w/index.php?title=Command-line_interface&redirect=no
https://en.m.wikipedia.org/w/index.php?title=Command-line_interface&redirect=no
http://pcsupport.about.com/od/termsc/p/command-prompt.htm

Preliminary Draft. Comments and Corrections Welcome!

A.1 Using Linux (e.g., via the Ubuntu distribu-
tion)

• Verify the Python version in your system (with python --version) and
upgrade it if not recent (in the series of the version 2.x at least 2.7.7; do not
use version 3.x).
A simple way to install Python from the terminal, is (sudo requires your
password)
sudo apt-get update
to update the list of the packages, then
sudo apt-get install python
to upgrade (or to install, if python is not there)

• If the program pip (Python Package Index) is not installed (try pip in the
terminal), run (always in the terminal)
sudo apt-get install python-pip

• Install the xlrd20 library to read spreadsheet files (.xls extension) in Python,
via terminal with
sudo pip install xlrd

• Until here, we have been copying the requirements of file WARNING.txt of
the folder 6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX.

• The tools above are sufficient to run the basic example, having no graphic
output, or the school project, which is entirely based on the graphical capa-
bilities of the Python turtle library (installed with Python). About turtles
see the Appendix B.

• If you want run the project production, graphically displaying networks,
the reference is WARNING bis - Production required libraries.txt in
the same folder above.

• Before installing Matplotlib, it is useful to install scipy via Ubuntu Software
Center; in this way you have also numpy installed (numpy is required by
Matplotlib).

• Install Matplotlib (http://matplotlib.org) via Ubuntu Software Center.

• Install NetworkX (https://networkx.github.io) with
sudo pip install networkx

20https://github.com/python-excel/xlrd

33

http://matplotlib.org
https://networkx.github.io
https://github.com/python-excel/xlrd

Preliminary Draft. Comments and Corrections Welcome!

A.2 Using Mac OS X
• Verify the Python version in your system (with python --version) and

upgrade it if not recent (in the series of the version 2.x at least 2.7.7; do not
use version 3.x).

To install Python download the Mac OS X 64-bit/32-bit installer from
https://www.python.org; with the current 2.7.10 version, the installer file
is python-2.7.10-macosx10.6.pkg. Run it (no security warning with OS
X Yosemite).

• pip (Python Package Index) is coming with recent versions of Python; any-
way, upgrade it via terminal with
sudo pip install --upgrade pip
(root user password required).

• Install the xlrd21 library to read spreadsheet files (.xls extension) in Python,
via terminal with
sudo pip install xlrd
(root user password required).

• Until here, we have been copying the requirements of file WARNING.txt of
the folder 6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX.

• The tools above are sufficient to run the basic example, having no graphic
output, or the school project, which is entirely based on the graphical capa-
bilities of the Python turtle library (installed with Python). About turtles
see the Appendix B.

• If you want run the project production, graphically displaying networks,
the reference is WARNING bis - Production required libraries.txt in
the same folder above.

• Before installing Matplotlib, it is useful to install scipy, via terminal with:
sudo pip install scipy
(root user password required). In this way you have also numpy installed
(numpy is required by Matplotlib).

• Install Matplotlib (http://matplotlib.org), via terminal with
sudo pip install matplotlib
(root user password required).

21https://github.com/python-excel/xlrd

34

https://www.python.org
http://matplotlib.org
https://github.com/python-excel/xlrd

Preliminary Draft. Comments and Corrections Welcome!

• Install NetworkX (https://networkx.github.io) with
sudo pip install networkx
(root user password required).

A.3 Using Windows (referring to Windows 10)
We refer here to Windows 10, but the following notes work also for the versions 7,
8, 8.1 (always supposing a 64 bits system).

Use the Command Prompt or the Windows PowerShell, introduced in note 19
above.

• Python 2.7.x, if installed, is in C:\Python27\

• Verify the Python version in your system (with python --version) and
upgrade it if not recent (in the series of the version 2.x at least 2.7.7; do not
use version 3.x).
From https://www.python.org/ you can download an installer; e.g. for
version 2.7.10 and a 64 bits system: python-2.7.10.amd64.msi. Simply
run the file clicking on it.
If you run python from a terminal (Command Prompt or Windows PowerShell),
the result is that the program does not exist. You have to run \python27\python
because the path of your system does not contemplate that folder as a repos-
itory programs. As an example, it could be (using Command Prompt; for
Windows PowerShell use $env:Path instead of set path):

>set path
Path=C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;
C:\Windows\System32\WindowsPowerShell\v1.0\

You have to modify the environment variables : from Settings go to System,
then to About, scroll down to find System Info, then proceed choosing
Advanced System Settings, press the Environment Variables button. In
System variables, chose Path, then Edit and add at the end of the path
the string (pay attention to the initial semicolon):
;c:\Python27\;c:\Python27\Scripts\.
Now you have

>set path
Path=C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;
C:\Windows\System32\WindowsPowerShell\v1.0\;c:\Python27\;
c:\Python27\Scripts\

35

https://networkx.github.io
https://www.python.org/

Preliminary Draft. Comments and Corrections Welcome!

Restart the terminal you were using to apply the new settings and the python
command works.

• pip (Python Package Index) is coming with recent versions of Python; any-
way, upgrade it via terminal with
sudo pip install --upgrade pip
(user password required).

• Install the xlrd22 library to read spreadsheet files (.xls extension) in Python,
via terminal with
sudo pip install xlrd
(user password required).

• Until here, we have been copying the requirements of file WARNING.txt of
the folder 6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX.

• The tools above are sufficient to run the basic example, having no graphic
output, or the school project, which is entirely based on the graphical capa-
bilities of the Python turtle library (installed with Python). About turtles
see the Appendix B.

• If you want run the project production, graphically displaying networks,
the reference is WARNING bis - Production required libraries.txt in
the same folder above.

• Before installing Matplotlib, it is useful to install scipy, via terminal with:23

sudo pip install scipy
(user password required). In this way you have also numpy installed (numpy
is required by Matplotlib).

• Install Matplotlib (http://matplotlib.org), via terminal with
sudo pip install matplotlib
(user password required).

• Install NetworkX (https://networkx.github.io) with
sudo pip install networkx
(user password required).

22https://github.com/python-excel/xlrd
23in case of error about the file vcvarsall.bat missing, run VCForPython27.msi from http:

//www.microsoft.com/en-us/download/details.aspx?id=44266; it is the Microsoft Visual
C++ Compiler for Python 2.7.

36

http://matplotlib.org
https://networkx.github.io
https://github.com/python-excel/xlrd
http://www.microsoft.com/en-us/download/details.aspx?id=44266
http://www.microsoft.com/en-us/download/details.aspx?id=44266

Preliminary Draft. Comments and Corrections Welcome!

Appendix B

On turtles

The turtle library mimics the behavior both of NetLogo,24 of OpenStarLogo,25

and (partially) of StarLogo TNG26 agent-based shells. The name turtle attributed
to the agents in those shells (and in the Python related library) comes from Logo, a
special language of the 1960s. At http://el.media.mit.edu/logo-foundation/
what_is_logo/logo_primer.html we read that:

The most popular Logo environment has involved the Turtle, orig-
inally a robotic creature that moved around on the floor.

It can be directed by typing commands at the computer. The com-
mand forward 100 causes the turtle to move forward in a straight line
100 "turtle steps". Right 45 rotates the turtle 45 degrees clockwise
while leaving it in the same place on the floor. Then forward 50 causes
it to go forward 50 steps in the new direction.

With just the two commands forward and right, the turtle can be
moved in any path across the floor. The turtle also has a pen which
may be lowered to the floor so that a trace is left of where it has
traveled. With the pen down, the turtle can draw geometric shapes,
and pictures, and designs of all sorts.

(. . .)
The turtle migrated to the computer screen where it lives as a

graphics object. Viewing the screen is like looking down on the me-
chanical turtle from above.

But . . . why the name turtle? In Epstein (2014, p.88) we have a nice but highly
subjective explanation:

24https://ccl.northwestern.edu/netlogo/
25http://web.mit.edu/mitstep/openstarlogo/index.html
26http://education.mit.edu/portfolio_page/starlogo-tng/

37

http://el.media.mit.edu/logo-foundation/what_is_logo/logo_primer.html
http://el.media.mit.edu/logo-foundation/what_is_logo/logo_primer.html
https://ccl.northwestern.edu/netlogo/
http://web.mit.edu/mitstep/openstarlogo/index.html
http://education.mit.edu/portfolio_page/starlogo-tng/

Preliminary Draft. Comments and Corrections Welcome!

NetLogo’s name for a generic agent is “turtle”. I choose to imagine
that this is in honor of a famous exchange between Bertrand Russel
and an audience member who told Russel that the earth was supported
on the nack of a great turtle. Russel asked, ‘And what, pray tell, is
supporting that turtle?’ The answer was immediate. “Oh, another
turtle . . . it’s turtles all the way down.”

My humble explanation is less interesting: when I was told about Logo for the
first time, in the 1970s, they explained me that the agent was a turtle . . . because
it was slowly moving.

Anyway, what is crucial is that NetLogo and StartLogo TNG (derive from what
now is named OpenStarLogo) have their roots in Logo and turtles (in Fig. B.1 the
logo of the Logo Foundation).

Figure B.1: The Logo Foundation, at
http://el.media.mit.edu/logo-foundation/

38

http://el.media.mit.edu/logo-foundation/

Bibliography

Boero, R., Morini, M., Sonnessa, M. and Terna, P. (2015). Agent-based Models of
the Economy Agent-based Models of the Economy – From Theories to Applica-
tions . Palgrave Macmillan, Houndmills.
URL http://www.palgrave.com/page/detail/agentbased-models-of-the-
economy-/?K=9781137339805

Downey, A. B. (2012). Think Python. How to Think Like a Computer Scientist.
O’Reilly Media, Inc., Sebastopol, CA.
URL http://www.greenteapress.com/thinkpython/

Elkner, J., Downey, A. B. and Meyers, C. (2013). Learning with Python:
Interactive Edition 2.0 . How to Think Like a Computer Scientist. Runestone
Interactive.
URL http://interactivepython.org/runestone/default/user/login?
_next=/runestone/default/index

Epstein, J. M. (2014). Agent_Zero: Toward Neurocognitive Foundations for Gen-
erative Social Science. Princeton University Press.

Minar, N., Burkhart, R., Langton, C. and Askenazi, M. (1996). The Swarm Simu-
lation System: A Toolkit for Building Multi-Agent Simulations . In «SFI Working
Paper», vol. 06(42).
URL http://www.santafe.edu/media/workingpapers/96-06-042.pdf

Sargent, T. and Stachurski, J. (2013). Quantitative Economics .
URL http://quant-econ.net

39

http://www.palgrave.com/page/detail/agentbased-models-of-the-economy-/?K=9781137339805
http://www.palgrave.com/page/detail/agentbased-models-of-the-economy-/?K=9781137339805
http://www.greenteapress.com/thinkpython/
http://interactivepython.org/runestone/default/user/login?_next=/runestone/default/index
http://interactivepython.org/runestone/default/user/login?_next=/runestone/default/index
http://www.santafe.edu/media/workingpapers/96-06-042.pdf
http://quant-econ.net

Index

$$slapp$$, 11

action container, 20, 21
AESOP, 20
agent creation, 25
Anaconda, 32

Future developments about agents, 27

If structures, 24
IPython, 29
IPython notebook, 29

Linux, 33
local code execution, 19

Mac OS X, 34
macros, 23, 24
Matplotlib patch, 29
Model, 14

Observer, 14
operating sets of agents, 26

predefining a default project, 12

schedule, 14, 16
schedule.xls, 21
scheduling hierarchy, 20
set of agents, 26
setting action probabilities, 22
spreadsheet formalism, 20
Swarm, 4, 5, 13, 14, 20

time loops, 22
turtle graphics and IPython, 30

turtles, 37
types of agents, 26

Ubuntu, 33

Windows, 35
world state, 23
WorldState, 23

40

	Introduction
	SLAPP and Swarm
	The README and related files: discovering two ways of using SLAPP
	Using SLAPP as a tutorial on agent-based programming
	Using SLAPP as an agent-based shell

	The basic project as a guide to the making of a new project
	Scheduling
	The scheduling mechanism at the level of the Observer
	The scheduling mechanism at the level of the Model
	The detailed scheduling mechanism within the Model (AESOP level)

	The agents and their sets
	Sets of agents
	Future developments about agents

	Other existing and upcoming projects
	From the basic to the school project
	Adding networks: the production project
	New projects and extensions
	Connecting to R, via Rserve
	Connecting to other applications, via Redis

	SLAPP in IPython
	Running SLAPP in an IPython notebook
	A temporary problem with IPython running as a notebook
	Turtle graphics and IPython

	Appendices
	Libraries for SLAPP
	Using Linux (e.g., via the Ubuntu distribution)
	Using Mac OS X
	Using Windows (referring to Windows 10)

	On turtles
	Bibliography
	Index

