
SLAPP (Swarm-Like Protocol in Python)
Reference Handbook

Pietro Terna
mailto:pietro.terna@unito.it

April 1, 2017

mailto:pietro.terna@unito.it

Contents

1 Introduction 4
1.1 SLAPP and Swarm . 4
1.2 Libraries to use SLAPP . 4
1.3 SLAPP online . 4
1.4 The README and the related files: discovering the two contents

of SLAPP . 5
1.4.1 Using SLAPP as a tutorial on agent-based programming

foundations . 6
1.4.2 Using SLAPP as an agent-based shell 7

2 The basic project as a guide to the making of a new project 19
2.1 How to run SLAPP . 19
2.2 Scheduling . 22

2.2.1 The scheduling mechanism at the level of the Observer . . . 23
2.2.2 The scheduling mechanism at the level of the Model 25
2.2.3 The detailed scheduling mechanism within the Model (AE-

SOP level), with WorldState and macros 29
2.2.3.1 The WorldState feature as a variable repository . . 32
2.2.3.2 The WorldState feature as a computational tool . . 33
2.2.3.3 The macros . 34
2.2.3.4 The if structure 34
2.2.3.5 Agents adding and eliminating tasks into the de-

tailed schedule . 35
2.3 The agents and their sets . 38

2.3.1 Sets of agents . 39
2.3.2 The use of files .txtx to define the agents 40
2.3.3 Future developments about agents 41

3 SLAPP multi-class: the basic2classes example 42
3.1 Introducing the example . 42

1

Draft. Comments and Corrections Welcome!

4 Debugging a new project: the debug project as a micro tutorial 45

5 Other existing and upcoming projects 47
5.1 Adding turtles : the school project 47
5.2 Adding networks: the production project 47
5.3 New projects and extensions . 47

5.3.1 Connecting to R, via Rserve 47
5.3.2 Connecting to other applications, via Redis 47
5.3.3 Parallel computations in SLAPP 48

6 SLAPP in IPython/Jupyter 49
6.1 Running SLAPP in an IPython/Jupyter notebook 49
6.2 Size or the pictures in IPython/Jupyter notebook 49
6.3 Turtle graphics and IPython . 50

Appendices 51

A Libraries for SLAPP 52
A.1 Using Linux (via the Ubuntu distribution) 53
A.2 Using Mac OS X . 54
A.3 Using Windows (referring to Windows 10) 55

B On SLAPP execution 58

C Problems with libraries 59
C.1 A warning about fonts coming from matplotlib 1.5.1 59

D On turtles 60

Bibliography 62

Index 63

2

Draft. Comments and Corrections Welcome!

List of Figures

1.1 Starting the basic project . 8
1.2 The output of the basic project . 9
1.3 Starting the school project . 10
1.4 The plain text output of the school project 11
1.5 The graphical output of the school project 12
1.6 Starting the production project . 13
1.7 The plain text output of the production project 14
1.8 The graphical output of the production project 15
1.9 Launching Jupyter from the SLAPP folder 16
1.10 Jupyter main window . 17
1.11 The basic project running in Jupyter 18

2.1 The representation of the schedule 23

D.1 The Logo Foundation, at
http://el.media.mit.edu/logo-foundation/ 61

3

http://el.media.mit.edu/logo-foundation/

Draft. Comments and Corrections Welcome!

Chapter 1

Introduction

1.1 SLAPP and Swarm
SLAPP, as Swarm-Like Protocol in Python, contains both a tutorial on agent-
based programming foundations and a shell to run large simulation projects, having
in mind the original Swarm1 scheme.

Studying the tutorial is not strictly necessary to use SLAPP as an agent-based
modeling shell. The tutorial is kept within the SLAPP distribution mainly to
maintain the original choice of the Swarm project, but the shell is close to become
an indipendent element.

The repository of SLAPP is at https://github.com/terna/SLAPP.
To read about Swarm and SLAPP, to examine several SLAPP applications,

and . . . a lot more, you can have a look to Boero et al. (2015) book.

1.2 Libraries to use SLAPP
To use SLAPP you need to install several Python libraries. To do that, please
follow Appendix A.

1.3 SLAPP online
To familiarize with SLAPP you can ask me (mailto:pietro.terna@unito.it)
to create an account for you at http://slapp-online.net:6789; you will be

1About Swarm, have a look to Minar et al. (1996). You can access Swarm website via
http://www.swarm.org. The project started at the Santa Fe Institute (first release: 1994). It
represents a milestone in agent-based simulation.

4

https://github.com/terna/SLAPP
mailto:pietro.terna@unito.it
http://slapp-online.net:6789
http://www.swarm.org

Draft. Comments and Corrections Welcome!

operatiing in a Jupyter2 web page.
A few memos: (i) with New/Terminal from the entry online page, you can

directly work with your virtual machine (with a bash shell in an Ubuntu environ-
ment); (ii) opening a .txt or .py file via the entry online page of Jupyter, you can
edit and save it; (iii) the button Upload in the entry online page allows you to
upload files; (iv) outside the Jupiter connection, you can also ssh to your account,
as yourUserName@slapp-online.net, using your password.

With Cell/All Output/Toggle Scrolling you can see the output of the on-
line simulation in a scrolling window or in a plain one.

Warning: to start a new project or to modify an existing one, please create a
new folder within the folder
6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX.
In case, pay attention to use a new name: the content of the folders which by
default are reported in SLAPP, is renewed each time the shell is updated by the
system administrator.

The online structure is based on JupyterHub3 In our Git, at https://github.
com/terna/SLAPP, we have also a folder4 containing the scripts used to adminis-
trate the web site.

1.4 The README and the related files: discover-
ing the two contents of SLAPP

The GitHub repository of SLAPP contains two README files.

• The _readmeFirst.txt file clarifies the content of the whole project.

We have both a tutorial and an agent-based simulation shell, coming from
the Swarm (http://www.swarm.org) project, and named SLAPP for Swarm-
Like Agent Protocol in Python.

You can find SLAPP as an Agent-based Model (ABM) shell, in the folder
number 6.5

Both the basic scheme of the tutorial, and all the files having in their names
the prefix Swarm_original, are coming from the tutorial that was distributed
by the Swarm Development Group via the swarmapps file (the last version,
that we use here, is swarmapps-objc-2.2-3.tar.gz).

2http://jupyter.org.
3https://github.com/jupyterhub/jupyterhub.
4scriptForJupyterHubAdministration.
56 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX

5

yourUserName@slapp-online.net
https://github.com/terna/SLAPP
https://github.com/terna/SLAPP
http://www.swarm.org
http://jupyter.org
https://github.com/jupyterhub/jupyterhub

Draft. Comments and Corrections Welcome!

Those files are unmodified in SLAPP, but the correction of a few typos.

We can find the original package at http://download.savannah.gnu.org/
releases/swarm/apps/objc/sdg/swarmapps-objc-2.2-3.tar.gz or at http:
//nongnu.askapache.com/swarm/apps/objc/sdg/swarmapps-objc-2.2-3.
tar.gz or at http://terna.to.it/swarm/swarmapps-objc-2.2-3.tar.gz.

• The README.md file, written using Markdown,6 introduces the new user to
all the information reported above, underlining again that we have two pos-
sible ways of using SLAPP: both as a tutorial on agent-based programming
foundations (see Section 1.4.1) or as an agent-based shell (see Section 1.4.2).

1.4.1 Using SLAPP as a tutorial on agent-based program-
ming foundations

• To study the tutorial, read first of all the content of the file SLAPP tutorial.txt,
which is in the main SLAPP folder..

• The file SLAPP tutorial.txt guides the user through the development of
an agent-based model that makes use of a lot of the ideas of Swarm; ideas
now rooted in the SLAPP structure.

The model refers to the movement of a bug, randomly walking in a 2D space.

We start introducing a very simple and plain program, with the bug taking
a random walk. Through a progression of models, we introduce both object-
oriented and Swarm style programming.

Although this is a quite simple exercise, it shows how to build complex
software from simple building blocks.

In this folder, we have several subfolders, each with a complete application
and a README file that helps you to walk through the code.

You should start with the 1 plainProgrammingBug folder, and then proceed
in the following order (the start files have a number, corresponding to that
of their folder):

1 plainProgrammingBug

2 basicObjectProgrammingBug

3 basicObjectProgrammingManyBugs

4 basicObjectProgrammingManyBugs_bugExternal_+_shuffle

6http://whatismarkdown.com

6

http://download.savannah.gnu.org/releases/swarm/apps/objc/sdg/swarmapps-objc-2.2-3.tar.gz
http://download.savannah.gnu.org/releases/swarm/apps/objc/sdg/swarmapps-objc-2.2-3.tar.gz
http://nongnu.askapache.com/swarm/apps/objc/sdg/swarmapps-objc-2.2-3.tar.gz
http://nongnu.askapache.com/swarm/apps/objc/sdg/swarmapps-objc-2.2-3.tar.gz
http://nongnu.askapache.com/swarm/apps/objc/sdg/swarmapps-objc-2.2-3.tar.gz
http://terna.to.it/swarm/swarmapps-objc-2.2-3.tar.gz
http://whatismarkdown.com

Draft. Comments and Corrections Welcome!

5 objectSwarmModelBugs

6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX

7 (toBeDeveloped_aFewHints)

• We used Python to write the tutorial: you can find a lot of wonderful re-
sources introducing the Python language. I suggest Downey (2012), a book
that you can also read online at the address reported in the references; this
book also exists in a slight different version, as a learning interactive tool
(Elkner et al., 2013). An alternative way to start learning Python is repre-
sented by the introductory part of the wonderful online book of Sargent and
Stachurski (2013) on quantitative economics. (There, you can also find an
introduction to Julia7, a quite recent and highly powerful language.)

• For the correct attribution of the authorship, we recall the file Swarm_original README in tutorial folder.txt,
related to the original tutorial. The file is in the main folder of SLAPP.

Note that the names of the txt files, here and in the subfolders, start with
the prefixes SLAPP or Swarm_original. This choice is just to underline if
we are referring to my reformulation in Python or to the original Swarm
elements. (Swarm was based on Objective C8 and successively also on Java;
the tutorial was in Objective C).

1.4.2 Using SLAPP as an agent-based shell

• To start running the agent-based shell, you can read the content of the file:
SLAPP shell.txt
and install the required libraries (to install them, you can follow the expla-
nations of Appendix A).
Then open a terminal, go into the SLAPP main folder (where you have un-
zipped the SLAPP distribution obtained from https://github.com/terna/
SLAPP and:9

1 - launch the application basic as in Figure 1.1:10

7http://julialang.org; highly interesting https://www.juliabox.org
8https://en.wikipedia.org/wiki/Objective-C
9About running SLAPP, read Section 2.1.

10Launching steps are also described in the initial bullets of Chapter 2.

7

https://github.com/terna/SLAPP
https://github.com/terna/SLAPP
http://julialang.org
https://www.juliabox.org
https://en.wikipedia.org/wiki/Objective-C

Draft. Comments and Corrections Welcome!

Figure 1.1: Starting the basic project

The effect is (plain text output only):

8

Draft. Comments and Corrections Welcome!

Figure 1.2: The output of the basic project

2 - launch the application "school" as in the following window:

9

Draft. Comments and Corrections Welcome!

Figure 1.3: Starting the school project

The effect is (plain text output):

10

Draft. Comments and Corrections Welcome!

Figure 1.4: The plain text output of the school project

and as graphical output:

11

Draft. Comments and Corrections Welcome!

Figure 1.5: The graphical output of the school project

3 - launch the application "production" as in the following window:

12

Draft. Comments and Corrections Welcome!

Figure 1.6: Starting the production project

The effect is (plain text output):

13

Draft. Comments and Corrections Welcome!

Figure 1.7: The plain text output of the production project

and as graphical output:

14

Draft. Comments and Corrections Welcome!

Figure 1.8: The graphical output of the production project

4 - If you prefer to work with Python in a notebook—using (i) the IPython11

interactive version of Python or, better, (ii) the “agnostic language shell”
named Jupyter 12—via a terminal go into the main SLAPP folder (that
where you have unzipped SLAPP) and launch Jupyter as in Figure 1.9:

11http://ipython.org
12http://jupyter.org

15

http://ipython.org
http://jupyter.org

Draft. Comments and Corrections Welcome!

Figure 1.9: Launching Jupyter from the SLAPP folder

then chose iRunShell.ipynb as in Figure 1.10:

16

Draft. Comments and Corrections Welcome!

Figure 1.10: Jupyter main window

and finally chose the project and run it as in Figure 1.11:

17

Draft. Comments and Corrections Welcome!

Figure 1.11: The basic project running in Jupyter

18

Draft. Comments and Corrections Welcome!

Chapter 2

The basic project as a guide to the
making of a new project

To let you familiarize with SLAPP we introduce the basic project (in Section
1.4.2 you had a view of it).

2.1 How to run SLAPP
The starting phase is introduced in the next bullet, in a detailed way, via the basic
example.

• In the SLAPP distribution, we have the basic folder13, containing an intro-
ductory application.

– We can launch the SLAPP simulation shell—via the runShell.py file
that we find in the main folder of SLAPP—from a terminal, with:
python runShell.py

– Alternatively, we can launch SLAPP as a simulation shell—via the
start.py file that we find in the folder of SLAPP, i.e.
6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX—from a
terminal, with:
python start.py
The last is a possible way, but deprecated.

– Is is not possible to runrunShell.py or start.py via the Python ded-
icated shells such as IDLE or Spyder, . . . Instead, it is i possible to use
Spyder to run start.py or runShell.py in IPython.

13Within the 6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX folder.

19

Draft. Comments and Corrections Welcome!

– To use SLAPP in IPython (in a jupyter notebook), go to the main
folder of SLAPP via a terminal and then start
jupyter notebook
and finally click on iRunShell.ipynb.

– Alternatively again, we can also run SLAPP in IPython via the Spyder
environment, executing %run start.py or %run runShell.py, going
to their folder with %cd followed by the path to the folder.

– We can also launch SLAPP from a Jupiter QtConsole—e.g. Anaconda
launcher—executing %run start.py or %run runShell.py, going to
their folder with %cd followed by the path to the folder.

– A further possibility is that of launching IPython from a terminal with
ipython command line, being in the SLAPP directory, and then exe-
cuting %run runShell.py, In this case the graphic results will be the
same of the execution from a terminal using Python.

In all cases, we immediately receive the request of choosing a project:
Project name?

• In this example we reply basic (or school or production, for the other
examples). If we want to create a new project, we simply add a new folder;
the folder name will also be automatically that of the project, and we will
choose it at the prompt above.

We also have a special folder, named $$slapp$$,14 that the user is not sup-
posed to modify. It is the folder where we store the kernel of SLAPP, i.e.,
its simulation engine. If you do not modify it, always building your applica-
tions in a separate folder, your work will not be affected by the modifications
introduced by the new versions of SLAPP.

• We can set a default project: if we place in the main SLAPP folder or in
the folder 6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX a
file named project.txt containing the path to a folder (basicTmp as an
example, so the content of the file could be something as
/Users/pt/Desktop/basicTmp15), and the initial message of SLAPP will be:

path and project = /Users/pt/Desktop/basicTmp
do you confirm? ([y]/n):

14Always within 6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX.
15In Windows it would be better to use backslashes “\” instead of slashes “/”. Anyway (verified

in Windows 10) also slashes work.

20

Draft. Comments and Corrections Welcome!

The feature is useful in two perspectives: (i) we can place our projects outside
the SLAPP folder; (ii) we can avoid typing the name of the project when, in
the debugging phase, we launch it a lot of times.

• Resuming the explanation: now we are looking at the message:

SLAPP started from a terminal
running in Python
debug = False

Project version 1.2
random number seed (1 to get it from the clock)

The Project version message is implemented as a suggestion only in the
basic project, specifying the version of the project into the file commonVar.py
and managing it via the file parameters.py; both the files are in the project
folder.

To reply to the open question about the random seed, we have to enter
an integer number (positive or negative; 0 is a valid input) to trigger the
sequence of the random numbers used internally by the simulation code. If
we reply 1, the seed—used to start the generation of the random series—
comes from the internal value of the clock at that instant of time. So it is
different anytime we start a simulation. This kind of reply is useful to repeat
the simulated experiments with different conditions. If we chose a number
different from 1, the same random sequence would be repeated anytime we
will use that seed. This solution is useful (1) while debugging, when we need
to repeat exactly the sequence generating some error, but also (2) to give to
the user the possibility of replicating exactly an experiment.

The running in Python sentence signals the we are running the program
in plain Python. Alternatively, the message could be running in IPython,
as explained in Chapter 6.

The SLAPP started from a terminal signals this info relatively to the
graphical behavior of SLAPP. For a technical explanation look at the con-
tent of the folder matplotlib_aQuestForAFewGraphicCapabilities in the main
SLAPP folder.

• Then the code asks us to enter the number of unspecified agents; this is
related to the AESOP (Agents and Emergencies for Simulating Organizations
in Python) perspective, introduced below as an abstract layer upon SLAPP.
There we have both well-defined agents (tasty) and unspecified ones (bland).

21

Draft. Comments and Corrections Welcome!

How many ’bland’ agents?

Finally, after a few information, we have to enter the number of the cycles
we want:

X size of the world? 50
Y size of the world? 50
How many cycles? (0 = exit)

Replying 3 as the number of bland agents and 3 as the number of cycles, we
obtain the output reported (only the final part) in Figure 1.2. The random
seed, as in Figure 1.1, was 3.

2.2 Scheduling
We introduce now time management, split into several (consistent) levels of schedul-
ing.

The general picture is that of Figure 2.1: in an abstract way we can imagine to
have a clock opening a series of containers or boxes. Behind the metaphor of the
boxes, in SLAPP, as it was in Swarm, we have the action groups, where we store
the information about the actions to be done.16

Imagining the events as objects, in the object-oriented programming perspec-
tive, is one of the key points of success in the original Swarm system. We implement
the same idea in SLAPP.

In SLAPP, we have the following three schedule mechanisms, or processes,
driving the events.

• The first mechanism is at the level of the Observer (Section 2.2.1) and the
second one at the level of the Model (Section 2.2.2), both with recurrent
sequences of action to be done.17 We will introduce the third mechanism,
more detailed, in Section 2.2.3.

• In our basic code, these sequences are reported in the files
observerActions.txt and

16The structure is highly dynamical because we can associate a probability to an event, or an
agent of the simulation can be programmed to add or eliminate one or more events into the boxes
or, better, into the action groups.

17The level of the Observer is our level, where the experimenter looks at the model (the level
of the Model) while it runs. This structure is a key feature in Swarm, and so we reproduce it in
SLAPP. Other simulation shells follows the same scheme: as an example, the observer is a key
feature in NetLogo https://ccl.northwestern.edu/netlogo/.

22

https://ccl.northwestern.edu/netlogo/

Draft. Comments and Corrections Welcome!

Figure 2.1: The representation of the schedule

modelActions.txt
in folder basic.18

2.2.1 The scheduling mechanism at the level of the Observer

.

• To discover the first schedule mechanism, we refer to the first file
(observerActions.txt), containing (row changes are not relevant):

modelStep ask_all clock
modelStep ask_one clock
modelStep ask_one clock

The interpretation is the following.

– First of all, we have to take into consideration that the execution of the
content of the file is “with repetition”, until an end item will appear (see
page 24). If we do not need differentiations within the repetition cycle,
also a content as the following should work:

18Within folder 6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX.

23

Draft. Comments and Corrections Welcome!

modelStep ask_all clock

However, the content can be as articulated as we need.

– modelStep orders to the model to make a step in time. The order acts
via the code of the file ObserverSwarm.py19, where we have (example
i) a simple rule ordering to the Model code to make a step.

– ask_all orders to all the agents to talk. In this case, always in Ob-
serverSwarm.py, we have (example ii) one of the four stable instances20

of the class ActionGroup within the Observer. That related to ask_all
contains the do2a variable, linking a method which is specified as a
function in the file oActions.py of folder basic. In this way, the ap-
plication of the basic method ask_all can be flexibly tailored to the
specific applications.

– clock ask the clock to increase its counter of one unit. When the count
will reach the value we have entered replying to the How many cycles?
query, the ActionGroup instance (example iii) related to the clock
(actionGroup1 in ObserverSwarm.py) will add the end item into the
sequence of the file observerActions.txt. The item is placed immedi-
ately after the clock call. The end item stops the sequence contained
in the file.
It is possible to automatically start a concluding sequence after end, if
we declare a string of Python instruction in a quoted way, as content
of the toBeExecuted variable to be added in the commonVar.py file.
Have a look to the example in the basic project, producing the final
Goodbye message.

– ask_one orders to the first component of the agent collection to talk.
As above (example ii, being this the example iv), we have an instance
of the class ActionGroup within the Observer. That related to ask_one
contains the do2b variable, linking a method which is specified as a
function in the file oActions.py in the folder basic. In this way, the
application of the basic method ask_one can be flexibly tailored to the
specific applications.

– It is useful to underline that the example (i) has no reference in the
file oActions.py. We can add similar items for the scheduling, directly
“wiring” them via the function

19Which is in the "$$slapp$$" folder (see above in this Chapter).
20The instances of the class ActionGroup contained in the file ActionGroup.py in folder

$$slapp$$ are related to: “clock”; “visualizeNet”, used with network analysis; “ask_all”; and
“ask_one”.

24

Draft. Comments and Corrections Welcome!

def otherSubSteps(subStep, address):
in oActions.py, without modifying
ObserverSwarm.py in $$slapp$$
(look at the production project to see how, with pause and prune).

• The examples (ii), (iii), and (iv) use the double structure of the instance of
the class ActionGroup and of the related method21 construction that we have
in ObserverSwarm.py (in $$slapp$$), with the definition in oActions.py
of the folder basic (in our current case). It is a more complicated structure,
but very flexible.

• Looking at the oActions.py files of the other projects (currently, school
and production), you can analyze the different ways of using the options
(i), (ii), (iii), and (iv).

• If we use a missing keyword in the files collecting the first two levels of
scheduling, i.e. observerActions.txt or modelActions.txt—maybe in er-
ror or referring to a not jet implemented item—we receive a warning. See:
Warning: step ask_on not found in Observer
where the item ask_one is misspelled,

2.2.2 The scheduling mechanism at the level of the Model

.

• The file modelActions.txt, quoted above at the beginning of Section 2.2,
is related to the second schedule mechanism: that of the Model. (About the
Observer/Model dualism, the reference is to note 17.)

The file contains (unique row, remembering that row changes are not relevant
in this group of files):

reset move read_script

The interpretation is the following.

– Also at the Model level, we have to take into consideration that the
execution of the content of the file is “with repetition”, never ending. It
is the Observer that stops the experiment, operating at its level.

21Technically, our pseudo-methods—that we pass to the instance via a variable—are always
functions. So, we have to manage explicitly the value of the usual self value. To avoid any
possible confusion, the term used in these cases—into the SLAPP code—is address.

25

Draft. Comments and Corrections Welcome!

– reset orders to the agents to make a reset, related to their variables.
The variables can be specified as explained in the next few rows. The
order acts via the code of the file ModelSwarm.py22. In this case, al-
ways in ModelSwarm.py, we have (example I) one of the three stable
instances23 of the class ActionGroup within the Model.
The item reset contains the do0 variable, linking a method that is
specified as a function in the file mActions.py in the folder basic. The
application of the basic method reset can so be flexibly tailored to the
specific applications, defining which are the variables we are reseting.
In our specific case, the content of the do0 function in mActions.py
asks all the agents to execute the method setNewCycleValues. The
method is defined in an instrumental file (agTools.py in $$slapp$$)
and it is, as default, doing nothing. We can redefined it in Agent.py in
the project folder. Into the basic project, reset is not operating, but
it is reported above as a memo for future uses.
The case is strictly similar to the examples ii, and subsequent ones,
introduced above (Section 2.2.1).

– move orders to the agents to move. The order acts via the code of
file ModelSwarm.py. We have here (example II) the second of the
three stable instances of the class ActionGroup within the Model. That
related to move contains the do1 variable, linking a method that is
specified as a function in the file mActions.py in the folder basic.
In this way, the application of the basic method move can be flexibly
tailored to the specific applications, defining what kind of movement (if
any) we order to the agents.
In our specific case, the content of the do1 function in mActions.py asks
all the agents to execute the method randomMovement. We defined that
method in the file Agent.py, in the project folder.
The case is strictly similar to the examples ii, and subsequent ones,
introduced above (Section 2.2.1).
The structure managing the movement is quite complicated, just to
propose a not trivial example.
The Python code (in mActions.py) determining the movement is:

askEachAgentInCollectionAndExecLocalCode \
(address.agentListCopy, Agent.randomMovement,

jump=random.uniform(0,5))
22That is in the "$$slapp$$" folder (see above in this Chapter).
23The instances of the class ActionGroup contained in the file ActionGroup.py in folder

$$slapp$$ are related to: “reset”; “move”; and “read_script”

26

Draft. Comments and Corrections Welcome!

A few details:

∗ address substitutes the implicit usual self as explained above in
Section 2.2.1;

∗ agentListCopy is a shuffled copy to ask the agent to move in an
ever-changing sequence;

∗ Agent.randomMovement is the address (within the class) of the
method that we send to the agent list;
an example helps to clarify (we are here using Python interactively,
in a shell):
>>> class A:

def __init__(self,b):
self.b=b

def prnt(self):
print self.b

>>> a=A(10)
>>> aa=A(100)
>>> a.prnt()
10
>>> aa.prnt()
100
>>> A.prnt
<unbound method A.prnt>
>>> A.prnt(a)
10
>>> A.prnt(aa)
100

∗ jump=random.uniform(0,5) is optional; if it is placed there, it
assigns a random value to a dictionary key named jump.

The method randomMovement, reported in Agent.py in folder basic
(this example), is defined with an optional24 dictionary in the head, as:

24 The optional dictionary works as in the following example (created interactively in a
Python shell):
>>>class A:

def test(self,**k):
self.b=1
if k.has_key(’b’):self.b=k[’b’]

27

Draft. Comments and Corrections Welcome!

def randomMovement(self,**k):

The call to the method assigns a default value to the key jump; the
method verifies its existence;

self.jump=1
if k.has_key("jump"): self.jump=k["jump"]

The value of the jump multiplies the length of the movement.

– read_script orders to the Model to open a new level of scheduling,
described in Section 2.2.3. The order acts via the code of file Model-
Swarm.py. We have here (example III) the third of the stable instances
of the class ActionGroup within the Model. The ActionGroup related
to read_script item is the actionGroup100 that contains the do100
function, used internally within ModelSwarm.py to manage the script
reported into the schedule.xls file (or directly into the schedule.txt
one).

• We have also the feature of the local code execution.

We use the function setLocalCode of Tools.py (in $$slapp$$) to define a
code to be executed “on the fly” via the function
askEachAgentInCollectionAndExecLocalCode
of Tools.py. The function simply executes:

exec(localCode)

having received the code to be executed (if you want to replicate this kind
of code implementation, have a look both to the function and to its internal
links). In this way, we have a flexible and powerful way for adding activities
in our agents.

We can employ the local code execution also within the agents’ methods used
in the third scheduling mechanism described in Section 2.2.3.

• The cases (I), (II) shown above are conceptually similar to the cases (ii)
and subsequent ones, seen above (Section 2.2.1); instead, the case (III) is
quite special.

>>> a=A()
>>> a.test()
>>> a.b
1
>>> a.test(b=10)
>>> a.b
10

28

Draft. Comments and Corrections Welcome!

We can also have schedule structures as the i above (always Section 2.2.1,
adding the code after
def otherSubSteps(subStep, address):
in mActions.py.

We have an example of this solution in the project production.

2.2.3 The detailed scheduling mechanism within the Model
(AESOP level), with WorldState and macros

.

• The third scheduling mechanism, as anticipated in Section 2.2, is based on
a detailed script system that the Model executes while the time is running.
The time is managed by the clock item in the sequence of the Observer.25

The script system is activated by the item read_script in the sequence of
the Model.

• This kind of script system does not exist in Swarm, so it is a specific feature
of SLAPP, introduced as implementation of the AESOP (Agents and Emer-
gencies for Simulating Organizations in Python) idea: a layer that describes
in a fine-grained way the actions of the agents in our simulation models.

• Let us deepen the scheduling hierarchy, with the three levels:

– at the Observer level (via the file observerActions.txt) we run a
high level sequence of events: (a) one of the events is the request to the
Model of making a step (modelstep) and (b) another is the request to
the clock to go by;

– at the Model level (via the file modelActions.txt) we run an inter-
mediate level sequence of events (a sub-cycle within the previous one):
one of the events is now the request (readScript) to the fine-grained
scripting system (if any) to execute the action container (see below,
next bullet point) related to the time step we are in;

– at the AESOP level (i.e. within the Model detailed scripting system)
we activate the set of rules and actions introduced in this Section.

• At the AESOP layer, the action containers are specified—with the # indica-
tors (see below)—upon the time; we put them into a spreadsheet describing
both the acting agents and their actions.

25Increasing the time counter of one unit for each call to the clock item.

29

Draft. Comments and Corrections Welcome!

We adopt the spreadsheet formalism because it is well known and diffused,
but you can bypass it creating directly a text file containing the same ele-
ments, as explained below.
Other details are in the files
SLAPP 6 objectSwarmObserverAgents.txt
and
a_note_on_AESOP.txt
in the usual folder
6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX.

• Now let us have a close look to an example of AESOP layer schedule (the
third layer), i.e. the timetable where we describe minutely the actions that
the agents are doing at each time step.

• The file schedule.xls can be composed of several sheets, with: (a) the first
one with the mandatory name schedule; (b) the other ones with any name
(those names are macro names.)26 We can recall the macro instructions in
any sheet, but not within the sheet that creates the macro (that one with
the same name of the macro), to avoid infinite loops.
We start with the sheet in scheduleBase.xls of folder basic. To use a
sheet, you have to rename it to schedule.xls (keep safe the original file).
Within the sheet, we have the action containers as introduce above, starting
with the sign #.
In scheduleBase.xls we have (comments start at column E):

COL. E

comments here or in successive columns
1 standard (background) actions, like move, are applied to "all"
bland eat bland agents are those not specified in dedicated .txt files,
bland dance with the related names reported in the agTypeFile.txt file
2
4
all 0.5 dance all agents acting
tasteC eat tasteC agents acting
5
all eat
all dance
7
tasteA 0.5 dance tasteA agents acting
8
tasteB dance tasteB agents acting (no agents of this type exist here)

• In column A, we can place: (i) the sign # or (ii) the word macro or (iii) a
name identifying a group of agents (the number of the agents in the group
can vary from 1 to any dimension; about the groups, see Section 2.3.1):

26We deeply use macros within the school project.

30

Draft. Comments and Corrections Welcome!

– with # (action container), we state that, when the clock reaches the
time (in units of the conventional internal clock of the model) specified
in column B, SLAPP wink execute the content of the rows27 following
that containing the # sign and until the next similar sign;

– with a macro name in column A, we indicate that at a given time,
SLAPP will activate the set of instructions reported in a specific sheet;
see below for macros;

– with a name identifying a set of agents28 in column A, we send to
this/these agent/s the method set in column B, as an action to be done
in a deterministic way; if in column B we have a number, it represents
the probability (upon 1) of execution of the method reported, in this
case, in column C; the probability can be close to 0, but always ≥ 0: 29

30

∗ the probability can be interpreted both as: (a) the share of the set
of agents—recalled in column A—requested to act; or (b)—which
is quite the same—as the probability of each individual of set of
executing the action;

∗ if the number in column B is both less than "0" and integer, exactly
that number (multiplied times −1 to have it as positive) of agents
is asked to execute the actions; the agents are randomly extracted
from the list. We use this feature both in the project school and
in the project production.

• The containers of action identified by the # sign can be also introduced in a
nonsequential way into each sheet of the spreadsheet If we repeat the same
“# time” sequence in the same sheet, only the last one is cosidered. The
sign can be employed into the macro sheets (also repeating a “# time”
sequence existing in another sheet); when the macro is called, the content of
its time blocks is properly placed in the related time steps, orderly (e.g., a
block coming from the third sheet will be placed after a block coming from
the second and before a block coming from the fourth sheet).

• Time loops : we can also manage time loops using a block such as
27Maybe none, or: (i) one or more, empty; (ii) one or more, with operating contents.
28Both coming from the agTypeFile.txt list or from the agOperatingSets.txt one; in this ex-

ample, we do not have operating sets.
29This is due to the internal use of the 0 value to discriminate cases in which the second

column directly contains a method.
30SLAPP displays—into the text output—a dictionary of the methods and of their probabili-

ties, if at least one method has a linked probability.

31

Draft. Comments and Corrections Welcome!

1 3
somethingA
somethingB

that will be internally transformed to

1
somethingA
somethingB
2
somethingA
somethingB
3
somethingA
somethingB

It is not possible to insert the time loops feature operating into the schedule.txt
file. Sure, we can repeat block using copy and paste and modifying by hand
the variable parts.

• We also have a more complicated schedule in the file
scheduleBaseWithMacros_WorldState.xls
(to be copied to
schedule.txt
for the use), where we employ both the WorldState feature and the macros .

2.2.3.1 The WorldState feature as a variable repository

Running a project, at the beginning of the output, we read:

World state has been created.

What does it mean?

The WorldState class interacts with the agents; we use a unique instance of
that class.

The variables managed via WordState have to be added, with their methods,
within the instance, following the existing example in project ’basic’, where
WorldState has set/get methods for the variable generalMovingProb.

In Agent.py of basic the method randomMovement asks to the WorldState
the probability threshold, to be compared with a random value to decide

32

Draft. Comments and Corrections Welcome!

to move. By construction (in WorldState.py into the basic project) the
default threshold is 1 (move always); if we modify it to 0.1, as in the example
below, movements will be a lot less frequent. The probability can also be 0.

This use of WordState has in Col. B a value and in Col. C the method used
to set that value into the WorldState; it will be retrieved by the agents using
a symmetric get method.31

In scheduleBaseWithMacros_WorldState.xls we have:

– in sheet schedule (comments not reported here)
1
bland eat
bland dance
2
4
all 0.5 dance
tasteC eat
WorldState 0.1 setGeneralMovingProb
5
all eat
all dance
7
tasteA 0.5 dance
8
tasteB dance

macro repeat

macro dancing

– in sheet dancing
9
all dance
10
tasteC dance

– in sheet repeat
5 10
tasteA eat

2.2.3.2 The WorldState feature as a computational tool

If in Col. B we have the expression computationalUse32, the content of Col.
C is a special method making world calculations.

You can find significant examples of the computational use of the WorldState
feature (with their code) within the project oligopoly at https://github.
com/terna/oligopoly.

31These methods have to be implemented by the user, see the example in the basic project.
32the expression specialUse is still working, but it is deprecated.

33

https://github.com/terna/oligopoly
https://github.com/terna/oligopoly

Draft. Comments and Corrections Welcome!

2.2.3.3 The macros

• In the example we also have the use of macros (as for time loops, macros
cannot be programmed directly in the file schedule.txt).

In the example above we have two macros, defined in the sheets dancing and
repeat. The effect in file schedule.txt follows. (NB, the call to a macro
can be usefully repeated, mainly if the macro has no time reference via #
sign).

• The content of the file schedule.txt with the effects of the macros:

1
bland eat
bland dance
2
4
all 0.5 dance
tasteC eat
WorldState 0.1 setGeneralMovingProb
5
all eat
all dance
tasteA eat
6
tasteA eat
7
tasteA 0.5 dance
tasteA eat
8
tasteB dance
tasteA eat
9
tasteA eat
all dance
10
tasteC dance

2.2.3.4 The if structure

• The if structure can be easily implemented, as in the school project, where
the file scheduleIf.xls (in sheet checkToObtainAttention) contains the
row:

saPupil shakeIf_greenPupil

The method shakeIf_greenPupil is developed in Agent.py in folder school.
It orders to the agents of type saPupil (a unique one, in our case) to shake,
but only if at least one of the agents of the group greenPupil has been shaking
(verified checking their last executed method).

34

Draft. Comments and Corrections Welcome!

2.2.3.5 Agents adding and eliminating tasks into the detailed
schedule

• The agents’ capability of adding and eliminating tasks into the detailed
schedule of the file schedule.xls can be useful the add a high dynamic
perspective to the sequence of the events

Look at the content of the file scheduleAddElim.xls"33 within the basic
project.
The differences with scheduleBase.xls are visible thanks this sequence of
\\\ signs, which are not part of the file.

COL. E

comments here or in successive columns
1 standard (background) actions, like move, are applied to "all"
bland eat bland agents are those not specified in dedicated .txt files,
bland dance with the related names reported in the agTypeFile.txt file

tasteA -1 addTask \\\adding a task

2

all -1 elimTask \\\eliminating a task

4
all 0.5 dance all agents acting
tasteC eat tasteC agents acting
5
all eat
all dance
7
tasteA 0.5 dance tasteA agents acting
8
tasteB dance tasteB agents acting (no agents of this type exist here)

– With “tasteA -1 addTask” we order to exactly one of the agents of
type tasteA to add, at time t+1, the item “all dance” (look at the file
Agent.py within the basic project. This is an unconditional action,
but it is quite easy to imagine to introduce probabilities or if structures
into the method addTask of Agent.py, as well as different time delays,
also in a dynamic way.

– With “all -1 elimTask” we order to exactly one of the agents of type
all to eliminate, at time t+ 2, the item “tasteC eat” (look at the file
Agent.py within the basic project. This is an unconditional action,
but againit is quite easy to imagine to introduce probabilities or if
structures into the method elimTask of Agent.py, as well as different
time delays, also in a dynamic way.

33Rename it schedule.xls if you want use it.

35

Draft. Comments and Corrections Welcome!

– You can see the effect into the simulation output below, having the
adding or eliminating steps producing: (i) the immediate outputs signed
with <============ and (ii) the delayed effects identified with <====.

SLAPP 1.35 build 20160824
Project name? basic
SLAPP started from a terminal
running in Python
debug = False

Project version 1.2
random number seed (1 to get it from the clock) 3
How many ’bland’ agents? 3
X size of the world? 50
Y size of the world? 50
How many cycles? (0 = exit) 5
Warning: operating sets not found.
World state has been created.
agent bland # 0 has been created at -14 , 2
agent bland # 1 has been created at -7 , 5
agent bland # 2 has been created at 6 , -22

No tasteB agents: lacking the specific file tasteB.txt

agent tasteA # 111 has been created at -25 , 16
agent tasteA # 222 has been created at -13 , -14
agent tasteC # 1111 has been created at 24 , -2

Project ./basic starting.

Time = 1
agent tasteA # 111 moving
agent bland # 1 moving
agent bland # 0 moving
agent tasteA # 222 moving
agent bland # 2 moving
agent tasteC # 1111 moving
methodProbabilities = {’dance’: 0.5}
I’m bland agent # 1: nothing to eat here!
I’m bland agent # 0: nothing to eat here!
I’m bland agent # 2: nothing to eat here!
I’m bland agent # 1: it’s not time to dance!
I’m bland agent # 2: it’s not time to dance!
I’m bland agent # 0: it’s not time to dance!
agent 222 adding a task for cycle 2 <============
Time = 1 ask all agents to report position
bland agent # 0 is at X = -18.3402265357 Y = 6.34022653572
bland agent # 1 is at X = -2.65977346428 Y = 5.0
bland agent # 2 is at X = 10.3402265357 Y = -22.0
tasteA agent # 111 is at X = -20.6597734643 Y = 20.3402265357
tasteA agent # 222 is at X = -8.65977346428 Y = -9.65977346428
tasteC agent # 1111 is at X = 24.0 Y = 2.34022653572
Time = 2
agent tasteC # 1111 moving
agent bland # 0 moving
agent tasteA # 222 moving
agent bland # 2 moving
agent bland # 1 moving
agent tasteA # 111 moving
I’m bland agent # 1: it’s not time to dance! <====

36

Draft. Comments and Corrections Welcome!

I’m tasteA agent # 111: I’m an A, nice to dance here! <====
I’m bland agent # 2: it’s not time to dance! <====
I’m bland agent # 0: it’s not time to dance! <====
I’m tasteA agent # 222: I’m an A, nice to dance here! <====
I’m tasteC agent # 1111: I’m a C, why to dance here? <====
agent 0 eliminating a task for cycle 4 <============
Time = 2 ask first agent to report position
bland agent # 0 is at X = -15.4148559987 Y = 9.26559707274
Time = 3
agent bland # 1 moving
agent tasteA # 222 moving
agent bland # 0 moving
agent tasteA # 111 moving
agent bland # 2 moving
agent tasteC # 1111 moving
Time = 3 ask first agent to report position
bland agent # 0 is at X = -18.4136700427 Y = 12.2644111167
Time = 4
agent bland # 1 moving
agent tasteC # 1111 moving
agent bland # 0 moving
agent tasteA # 222 moving
agent bland # 2 moving
agent tasteA # 111 moving
I’m bland agent # 2: it’s not time to dance!
I’m bland agent # 0: it’s not time to dance!
I’m tasteA agent # 111: I’m an A, nice to dance here!
I’m bland agent # 1: it’s not time to dance!
I’m tasteC agent # 1111: I’m a C, why to dance here?
tasteC modified to dummy in: [’tasteC’, ’eat’] <====
agent dummy does not exist <====
Time = 4 ask all agents to report position
bland agent # 0 is at X = -18.4136700427 Y = 7.37542453448
bland agent # 1 is at X = -8.58395804529 Y = 3.03638395478
bland agent # 2 is at X = 18.154583655 Y = -17.1110134178
tasteA agent # 111 is at X = -25 Y = 22.3038425809
tasteA agent # 222 is at X = -14.5839580453 Y = -4.844230389
tasteC agent # 1111 is at X = 24.0 Y = 3.37542453448
Time = 5
agent bland # 1 moving
agent tasteC # 1111 moving
agent tasteA # 111 moving
agent bland # 2 moving
agent bland # 0 moving
agent tasteA # 222 moving
I’m bland agent # 1: nothing to eat here!
I’m tasteA agent # 222: nothing to eat here!
I’m bland agent # 2: nothing to eat here!
I’m tasteC agent # 1111: nothing to eat here!
I’m bland agent # 0: nothing to eat here!
I’m tasteA agent # 111: nothing to eat here!
I’m tasteC agent # 1111: I’m a C, why to dance here?
I’m bland agent # 0: it’s not time to dance!
I’m tasteA agent # 111: I’m an A, nice to dance here!
I’m bland agent # 2: it’s not time to dance!
I’m tasteA agent # 222: I’m an A, nice to dance here!
I’m bland agent # 1: it’s not time to dance!
Time = 5 ask first agent to report position
bland agent # 0 is at X = -18.4136700427 Y = 8.48811374845
Time = 6
enter to conclude
Goodbye

37

Draft. Comments and Corrections Welcome!

2.3 The agents and their sets
We have files containing the agents of the different types. These files are listed
in a master file, with name agTypeFile.txt: in our case, it simply contains the
record tasteA tasteB tasteC (the names are just an example).

• tasteA.txt lists the agents of type (“taste”) A; in our case it reports only
the identification numbers:

111
222

• tasteC.txt lists the unique agent of type (“taste”) C, with the identifying
number:

1111

• tasteB agent are missing, so we have no file tasteB.txt; lacking the file,
we receive the message:

No tasteB agents: lacking the specific file tasteB.txt

The presence in the folder of an empty tasteB.txt file (zero bytes or contain-
ing a few spaces), would eliminate the message above. The SLAPP program
raises no errors in the execution in any case.

The agents are created by ModelSwarm.py (in folder $$slapp$$) via the appli-
cation specialized file mActions.py (in folder basic).

def createTheAgent(self,line,num,leftX,rightX,bottomY,topY,agType):
#explictly pass self, here we use a function
#print "leftX,rightX,bottomY,topY", leftX,rightX,bottomY,topY

if len(line.split())==1:
anAgent = Agent(num, self.worldStateList[0],

random.randint(leftX,rightX),
random.randint(bottomY,topY),
leftX,rightX,bottomY,topY,agType=agType)

self.agentList.append(anAgent)

else:
print "Error in file "+agType+".txt"
os.sys.exit(1)

Each project has an analogue structure dedicated to its agents. The following
bullets describe how this code works.

38

Draft. Comments and Corrections Welcome!

• As an ex-ante information, the identifying number of the agent is read outside
this function, as a mandatory first element in the lines of any file containing
agent descriptions. Also the content of the agType variable is coming from
outside, being the name of the agent file currently open.

• We check the input file, which—in the case of the project basic—has to
contain a unique datum per row.

Other projects can have several data in each row, related to multiple at-
tributes of each agent. 34

Each agent is added to the agentList.

2.3.1 Sets of agents

The files containing the agents are of two families:

• files listing the agents with their characteristics (if any): in folder basic we
have the files tasteA.txt and tasteC.txt;

• files defining groups of agents:

– the list of the types of agents (mandatory); from this list SLAPP
searches for the file describing the agents (first bullet here above); in
folder basic we have the file agTypeFile.txt (also the name of this
file is mandatory), containing:

tasteA tasteB tasteC

– the list of the operating sets of agents (optional); in folder basic this
file is missing. Indeed we receive the message
Warning: operating sets not found.
In school project we have the file agOperatingSets.txt (the name of
this file is mandatory), with content:

threeGreen leftS rightS r1l r2l r3l r1r r2r r3r r4r
lRow cZone 1Pupil 2Pupil 3Pupil 4Pupil 5Pupil
6Pupil 7Pupil 8Pupil 9Pupil 10Pupil 11Pupil
12Pupil 13Pupil 14Pupil 15Pupil 16Pupil 17Pupil
18Pupil 19Pupil 20Pupil 21Pupil

34The files defining each set of agents can also have the extension .txtx. In case, they will be
translated in regular .txt file, as explained in Section 2.3.2.

39

Draft. Comments and Corrections Welcome!

All the names contained in the file are related to other .txt files report-
ing the identifiers of agents specified in the lists of the previous bullet.
The goal of this feature is that of managing clusters of agents, recalling
them as names in Col. A in Section 2.2.3.

2.3.2 The use of files .txtx to define the agents

The files with extension .txtx (txt eXtended) are used to define the agents in a
flexibile way.

An example is reported in the basic project where the tasteA.txt file contains:

111
222

and generates the taste A agents with id (number) 111 and 222.
Redefining tasteA.txtx_ to tasteA.txtx the mechanism activated by the files

.txtx operates. The file tasteA.txtx contains:

111@120

and produces a file tasteA.txt containing:

111
112
113
114
115
116
117
118
119
120

(to roll back copy tasteA.txt_ to tasteA.txt). Definitions:

• n and v are mandatory names;

• n is the value in first position of the record (cannot be a formula);

• v is the result of the calculation in a formula;

• & starts and concludes a formula.

We can have more than one formula in a row of the .txtx file. Typical complex
rows (with the extension .txtx as eXtended txt) are:

40

Draft. Comments and Corrections Welcome!

1@3 1 2 &if n==1:v=100#else:v=10& 3

with effect:

1 1 2 100 3
2 1 2 10 3
3 1 2 10 3

or (with the same effect):

1@3 1 2 &if n==1:v=100#if n>1:v=10& 3

or

1@3 &v=100*n& 3

1@3 1 2 3

The sign ;—as separator of instruction in the same row–is quite complicated to
be used within an if construct, so we use # as special sign, internally translated
to \n (change row sign).

Details (NB, a and b are only used for the examples):

exec("a=2; if a< 3: print ’phew’") rises and error
exec("a=2\nif a< 3: print ’phew’") works
exec("a=2\n if a< 3: print ’phew’") rises and error again

The sign ; is not forbidden, but we suggested to use it (carefully) to build
blocks after an if structure; e.g.:

exec("a=2\nif a<2:b=11;print b\nelse: b=22;print b")

2.3.3 Future developments about agents

Until v.1.36 we had a unique Agent class for each project, containing heterogeneous
methods addressed to different types of agents. The agent types are specified as in
Section 2.3.1, so all is working, but from the coding point of view, this construction
is a bit annoying.

Look at project "production" to see how we logically subdivide the unique class
of the agents.

SLAPP 1.36 and most of all 1.4 introduces the possibility of having any num-
ber of classes for the agents, with methods used: (a) in the AESOP mechanism
(read_script execution), but also (b) at the higher level of Model scheduling,
when a function like askEachAgentInCollection (of Tools.py) is internally usedm
maybe in mActions.py. For details look at Section 3.

41

Chapter 3

SLAPP multi-class: the
basic2classes example

3.1 Introducing the example
The project basic2classes shows how to use the multi-class capability of SLAPP.35

• The file agClassFile.txt reports the links between the names of each type
of instance and its class; in this example, the names are the same of the
project basic plus a new one, which has a class on its own (OtherAgent):

tasteA Agent
tasteB Agent
tasteC Agent
tasteD OtherAgent

We make automatically a consistency control between the contents of
agClassFile.txt and agTypeFile.txt.

We create, as above, two agents of type tasteD via the file tasteD.txt,
containing:

11111
22222

• To create, in ModelActions.py, the new kind of agents introduced in this
Section, having class different from Agent, we call the general function

35If you are not aware of classes and how use them in Python, have a look to https://docs.
python.org/2/tutorial/classes.html.

42

https://docs.python.org/2/tutorial/classes.html
https://docs.python.org/2/tutorial/classes.html

Draft. Comments and Corrections Welcome!

createTheAgent_Class(self,line,num,agType,agClass), implemented in
mActions.py of the specific project we use, as in the example of the project
basic2classes.

The parameters line, num, agType, agClass are fixed. We can recall
other parameters (e.g., those related to the world limits if we are consid-
ering the space or the address of the meta-agent WorldState) prefixing
self—which is here a pointer to ModelSwarm.py in $$slapp$$ folder—to
their names. Have a look to the examples of the projects included into the
distribution of SLAPP.

line is a special parameter containing the current line coming from the file
.txt in which we define the agents of the class under construction.

• All the class of the agents have to inherit from the class Agent ; Agent inherits
from SuperAgent, which inherits from object.36 Bland agents automatically
inherits from the Agent class.

• We can place into the Agent class all the common methods; if necessary, we
can redefine them into the inhering classes.

• In the example presented here we have agents created directly as instances of
the Agent class and agents created as instances of the otherAgent class; this
situation is related to the example: we can have all the agents derived from
classes different from the Agent one. As stated above, anyway all inheriting
from that class.

N.B. to simplify the structure of SLAPP, the name of a class and the name of
the file containing it have to be the same.

The example is based on the schedule below, derived from the base schedule of
the project basic, modified adding all sleep after # 2 and tasteD sleep after
3.

The method sleep is defined only in the class OtherAgent. In OtherAgent is
also redefined the method randomMove, with the agents refusing to move!

COL. E

comments here or in successive columns
1 standard (background) actions, like move, are applied to "all"
bland eat bland agents are those not specified in dedicated .txt files,
bland dance with the related names reported in the agTypeFile.txt file
2
all sleep
3
tasteD sleep

36WolrdState inherits directly from object.

43

Draft. Comments and Corrections Welcome!

4
all 0.5 dance all agents acting
tasteC eat tasteC agents acting
5
all eat
all dance
7
tasteA 0.5 dance tasteA agents acting
8
tasteB dance tasteB agents acting (no agents of this type exist here)

Starting the project, we have chosen 3 as seed of the random sequence and
declared 3 as number of bland agents.

The results specifically related to the sleep method), at time 2 and 3 are:

Time = 2
...
Warning, class Agent (or above) of agent tasteA does not have the method sleep
Warning, class Agent (or above) of agent bland does not have the method sleep
Warning, class Agent (or above) of agent tasteA does not have the method sleep
I’m tasteD agent # 22222: happy to sleep!
Warning, class Agent (or above) of agent bland does not have the method sleep
I’m tasteD agent # 11111: happy to sleep!
Warning, class Agent (or above) of agent tasteC does not have the method sleep
Warning, class Agent (or above) of agent bland does not have the method sleep
...
Time = 3
...
I’m tasteD agent # 11111: happy to sleep!
I’m tasteD agent # 22222: happy to sleep!
...

At t = 2 all the agents are reacting, both signaling that their class is lacking
of the method sleep or replying correctly.

At t = 3 only the tasteD agents are activated and reply in the due way.
Looking at the effect of the order move in modelActions.txt, activating the

method randomMove (defined in class Agent, bur redefined in class OtherAgents),
we see below that at t = 1 (and the same for successive steps) TasteD agents react
in a special way.

Time = 1
agent tasteA # 222 moving
agent bland # 1 moving
agent bland # 0 moving
agent bland # 2 moving
I’m tasteD agent # 22222: absolutely not moving!!!
agent tasteA # 111 moving
I’m tasteD agent # 11111: absolutely not moving!!!
agent tasteC # 1111 moving

44

Draft. Comments and Corrections Welcome!

Chapter 4

Debugging a new project: the debug
project as a micro tutorial

Running the project debug}37 with the option debug set to False in its commonVar.py
file or missing at all, we have:

(...)
Project name? debug
debug = False
(...)

Time = 1
I’m bland agent # 2: clock is at 1
I’m bland agent # 0: clock is at 1
I’m bland agent # 1: clock is at 1
I’m A agent # 11: clock is at 1
I’m A agent # 22: clock is at 1
Time = 2
Warning, method checkCloc does not exist in class Agent <========
Time = 3
I’m bland agent # 1: clock is at cannot apply (case 0) method checkSuperClock to agent

number 1 of type bland
I’m bland agent # 0: clock is at cannot apply (case 0) method checkSuperClock to agent

number 0 of type bland
I’m A agent # 11: clock is at cannot apply (case 0) method checkSuperClock to agent

number 11 of type A
I’m bland agent # 2: clock is at cannot apply (case 0) method checkSuperClock to agent

number 2 of type bland
I’m A agent # 22: clock is at cannot apply (case 0) method checkSuperClock to agent

number 22 of type A
Time = 4
enter to conclude

checkCloc effectively does not exists as a method (it is a typo in schedule.xls);
the warning message perfectly identify the problem; the program is anyway run-
ning.

Using SLAPP for Python 3 the message about checkCloc is more elaborated:
37debug project is a clone (with different methods in Agent class) of the basic one.

45

Draft. Comments and Corrections Welcome!

Warning, class Agent (or above) of agent bland does not have the method checkCloc
Warning, class Agent (or above) of agent A does not have the method checkCloc
Warning, class Agent (or above) of agent bland does not have the method checkCloc
Warning, class Agent (or above) of agent bland does not have the method checkCloc
Warning, class Agent (or above) of agent A does not have the method checkCloc

Then we have several message declaring that it is impossible to apply the
method checkSuperClock to a few agents; the attempt of communicating that the
“clock is at” fails.

But why? The SLAPP attempt of capturing the errors, is hiding here the
Python messages explaining what is happening.

Correct the typo writing correctly checkClock; then set debug to True in
commonVar.py and run again.

We have:

(...)
Project name? debug
debug = True
(...)

Time = 1
I’m A agent # 11: clock is at 1
I’m A agent # 22: clock is at 1
I’m bland agent # 0: clock is at 1
Time = 2
I’m A agent # 11: clock is at 2
I’m bland agent # 0: clock is at 2
I’m A agent # 22: clock is at 2
Time = 3
I’m bland agent # 0: clock is at
Traceback (most recent call last):

File "start.py", line 39, in <module>
observerSwarm.run()

File "./$$slapp$$/ObserverSwarm.py", line 103, in run
self.modelSwarm.step(common.cycle)

File "./$$slapp$$/ModelSwarm.py", line 296, in step
self.actionGroup100.do(self,cycle)

File "./$$slapp$$/ModelSwarm.py", line 215, in do100
self.applyFromSchedule(localList,task)

File "./$$slapp$$/ModelSwarm.py", line 334, in applyFromSchedule
if common.debug: exec "askEachAgentInCollection(localList,Agent"+"."+task[1]+")"

File "<string>", line 1, in <module>
File "./$$slapp$$/Tools.py", line 38, in askEachAgentInCollection

if common.debug: method(a,**k)
File "./debug/Agent.py", line 46, in checkSuperClock

print "clock is at ", common.cycles
AttributeError: ’module’ object has no attribute ’cycles’ <========

We discover that the error is due to the use of the attribute cycles supposed
to be in common, while the correct name is cycles.

In the same way, setting debug=True in commonVar.py of any project, we can
have the Pyhon syntax emerging in case of coding errors. The misuse of method
etc. is alway signaled by SLAPP.

46

Draft. Comments and Corrections Welcome!

Chapter 5

Other existing and upcoming
projects

The project oligopoly will be included in the SLAPP distribution. Temporary
look at it at https://github.com/terna/oligopoly.

5.1 Adding turtles: the school project
We add here turtle graphical capabilities. TO BE DEVELOPED.

About the name (turtle), have a look at Appendix D.

5.2 Adding networks: the production project
TO BE DEVELOPED.

5.3 New projects and extensions

5.3.1 Connecting to R, via Rserve

TO BE DEVELOPED.

5.3.2 Connecting to other applications, via Redis

TO BE DEVELOPED.
Redis is at http://redis.io.
We can—as an example—connect a SLAPP model to a NetLogo one (NetLogo

address in Appendix D).

47

https://github.com/terna/oligopoly
http://redis.io

Draft. Comments and Corrections Welcome!

5.3.3 Parallel computations in SLAPP

We plan to introduce parallel computation capabilities in SLAPP relatively to the
class of problems defined as embarrassingly parallel.38

The plan is of exploring the use of ipyparallel project.39

38https://en.wikipedia.org/wiki/Embarrassingly_parallel.
39https://github.com/ipython/ipyparallel.

48

https://en.wikipedia.org/wiki/Embarrassingly_parallel
https://github.com/ipython/ipyparallel

Draft. Comments and Corrections Welcome!

Chapter 6

SLAPP in IPython/Jupyter

6.1 Running SLAPP in an IPython/Jupyter note-
book

SLAPP runs in IPython.
To use it as a notebook go to the main SLAPP folder via a terminal, then start:
jupyter notebook
and load in jupyter the file iRunShell.ipynb.
We do not explain here how to install Jupiter (https://jupyter.org), but a

short cut is

pip install jupyter

or

sudo pip install jupyter

Look at the contents of Appendix A about the use of pip.
We also plan to have a SLAPP version running online.
The module graphicControl.py in the $$slapp$$ folder operates the identi-

fication of the environment used to run SLAPP and of the related characteristics.

6.2 Size or the pictures in IPython/Jupyter note-
book

The width and the height of the graphic pictures within an IPython notebook
is defined in the module graphicControl.py (see page 49 and can be redefined
within the commonVat.py module of each application with:

49

https://jupyter.org

Draft. Comments and Corrections Welcome!

width = a value
height = a value
The values are in inches, but . . . on paper and on the screen the effect is related

to the screen and printer pixel density.
The width/height suggested ratio is 3/2.

6.3 Turtle graphics and IPython
Turtle graphics does not work in an IPython notebook (maybe in the future,
existing several projects in that direction); the turtle display is generate outside
the notebook. To run SLAPP on line, a possible solution is that of opening a
VNC40 connection parallel to the notebook interaction. More to come.

40https://en.wikipedia.org/wiki/Virtual_Network_Computing.

50

https://en.wikipedia.org/wiki/Virtual_Network_Computing

Appendices

51

Draft. Comments and Corrections Welcome!

Appendix A

Libraries for SLAPP

To use SLAPP you need to install a few Python libraries.
An easy way to have anything installed at once is the Anaconda Scientific

Python distribution. You can find it at https://store.continuum.io/cshop/
anaconda/, with clear installing instructions. Anaconda contains installers for
Python 2.7 and 3.4: for SLAPP chose Python 2.7.

After the installation, your environment variable (PATH in Mac OS and Linux;
PATH o path in Windows)41 will contain the information to use Python and
IPython from the anaconda folder (usually in the user home) and its subfolders.

If you do not want to use the Anaconda distribution, the do it yourself way is
feasible.

41It is possible to see the content of the path from the Terminal (Command Prompt or
Windows PowerShell in Windows) with:

echo $PATH
in Linux/Mac OS terminal

set path
in Command Prompt of Windows

$env:Path
in Windows PowerShell of Windows.

It is highly useful to familiarize with the Unix-like commands of the Linux/Mac OS Terminal and
Windows PowerShell, e.g., at https://en.m.wikipedia.org/w/index.php?title=Command-
line_interface&redirect=no and with the DOS-like commands of Command Prompt of
Windows, e.g., at http://pcsupport.about.com/od/termsc/p/command-prompt.htm.

52

https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/
https://en.m.wikipedia.org/w/index.php?title=Command-line_interface&redirect=no
https://en.m.wikipedia.org/w/index.php?title=Command-line_interface&redirect=no
http://pcsupport.about.com/od/termsc/p/command-prompt.htm

Draft. Comments and Corrections Welcome!

A.1 Using Linux (via the Ubuntu distribution)
• Verify the Python version in your system (with python --version) and

upgrade it if not recent (in the series of the version 2.x at least 2.7.7; for
SLAPP you cannot use version 3.x).

A simple way to install Python from the terminal, is (sudo requires your
password)42

sudo apt-get update
to update the list of the packages, then
sudo apt-get install python
to upgrade (or to install, if Python is not there)

• In the Ubuntu distribution, at the best of my knowledge, Python is installed
without the Tkinter module. Tkinter is required bymatplotlib, see below. To
check your system, start Python and order import Tkinter;43 if the reply
signal the library as missing, install it with:
sudo apt-get install python-tk

• If the program pip (Python Package Index) is not installed (try pip in the
terminal), run (always in the terminal)
sudo apt-get install python-pip

• Install the xlrd44 library to read spreadsheet files (.xls extension) in Python,
via terminal with
sudo pip install xlrd

• Until here, we have been copying the requirements of file WARNING.txt of
the folder 6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX.

• The tools above are sufficient to run the basic example, having no graphic
output, or the school project, which is entirely based on the graphical capa-
bilities of the Python turtle library (installed with Python). About turtles
see the Appendix D.

• If you want run the project production, graphically displaying networks, or
the oligopoly project 45 the reference is

42This note is related to Ubuntu distribution, but do not use strictly the Ubuntu Software
Center, mainly to be a bit more general; anyway, if you use other Linux distributions, your are
certainly cleverer than the author of this Reference Handbook.

43Capital “T” if you are using Python 2 as suggested here; for Python 3 we have to write
tkinter with small “t”.

44https://github.com/python-excel/xlrd
45https://github.com/terna/oligopoly

53

https://github.com/python-excel/xlrd
https://github.com/terna/oligopoly

Draft. Comments and Corrections Welcome!

WARNING bis - Production required libraries.txt in the same folder
above.

• Before installing matplotlib, it is useful to install scipy via Ubuntu Soft-
ware Center or via command line with
sudo apt-get install python-scipy
In this way you have also numpy installed (numpy is required by matplotlib).

• Install matplotlib (http://matplotlib.org) via Ubuntu Software Center
or via terminal with
sudo pip install matplotlib

• Install NetworkX (https://networkx.github.io) with
sudo pip install networkx

• Install46 pandas (http://pandas.pydata.org) with
sudo pip install pandas

A.2 Using Mac OS X
• Verify the Python version in your system (with python --version) and

upgrade it if not recent (in the series of the version 2.x at least 2.7.7; do not
use version 3.x).

To install Python download the Mac OS X 64-bit/32-bit installer from
https://www.python.org; with the current 2.7.10 version, the installer file
is python-2.7.10-macosx10.6.pkg. Run it (no security warning with OS
X Yosemite).

• pip (Python Package Index) is coming with recent versions of Python; any-
way, upgrade it via terminal with
sudo pip install --upgrade pip
(root user password required).

• Install the xlrd47 library to read spreadsheet files (.xls extension) in Python,
via terminal with
sudo pip install xlrd
(root user password required).

• Until here, we have been copying the requirements of file WARNING.txt of
the folder 6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX.

46For the oligopoly project or in any case in which you need a database within SLAPP.
47https://github.com/python-excel/xlrd

54

http://matplotlib.org
https://networkx.github.io
http://pandas.pydata.org
https://www.python.org
https://github.com/python-excel/xlrd

Draft. Comments and Corrections Welcome!

• The tools above are sufficient to run the basic example, having no graphic
output, or the school project, which is entirely based on the graphical capa-
bilities of the Python turtle library (installed with Python). About turtles
see the Appendix D.

• If you want run the project production, graphically displaying networks, or
the oligopoly project 48 the reference is
WARNING bis - Production required libraries.txt in the same folder
above.

• Before installing matplotlib, it is useful to install scipy, via terminal with:
sudo pip install scipy
(root user password required). In this way you have also numpy installed
(numpy is required by matplotlib).

• Install matplotlib (http://matplotlib.org), via terminal with
sudo pip install matplotlib
(root user password required).

• Install NetworkX (https://networkx.github.io) with
sudo pip install networkx
(root user password required).

• Install49 pandas (http://pandas.pydata.org) with
sudo pip install pandas
(root user password required).

• If you have IDLE or tinter troubles in Mac, carefully analyze https://www.
python.org/download/mac/tcltk/.

A.3 Using Windows (referring to Windows 10)
We refer here to Windows 10, but the following notes work also for the versions 7,
8, 8.1 (always supposing a 64 bits system).

Use the Command Prompt or the Windows PowerShell, introduced in note 41
above.

• Python 2.7.x, if installed, is in C:\Python27\

48https://github.com/terna/oligopoly
49For the oligopoly project or in any case in which you need a database within SLAPP.

55

http://matplotlib.org
https://networkx.github.io
http://pandas.pydata.org
https://www.python.org/download/mac/tcltk/
https://www.python.org/download/mac/tcltk/
https://github.com/terna/oligopoly

Draft. Comments and Corrections Welcome!

• Verify the Python version in your system (with python --version) and
upgrade it if not recent (in the series of the version 2.x at least 2.7.7; do not
use version 3.x).

From https://www.python.org/ you can download an installer; e.g. for
version 2.7.10 on a 64 bits system: python-2.7.10.amd64.msi. Run the file
clicking on it.

If you run python from a terminal (Command Prompt or Windows PowerShell),
the reply is that the program does not exist. You have to run

\python27\python

because the path of your system does not contemplate that folder as a repos-
itory for programs. As an example, it could be (using Command Prompt; for
Windows PowerShell use $env:Path instead of set path):

>set path
Path=C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;
C:\Windows\System32\WindowsPowerShell\v1.0\

You have to modify the environment variables : from Settings go to System,
then to About, scroll down to find System Info, then proceed choosing
Advanced System Settings, press the Environment Variables button. In
System variables, chose Path, then Edit and add at the end of the path
the string (pay attention to the initial semicolon):

;c:\Python27\;c:\Python27\Scripts\.

Restart the terminal you were using to apply the new settings and the python
command will work.

Now you have:

>set path
Path=C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;
C:\Windows\System32\WindowsPowerShell\v1.0\;c:\Python27\;
c:\Python27\Scripts\

• pip (Python Package Index) is coming with recent versions of Python; any-
way, upgrade it via terminal with
pip install --upgrade pip

56

https://www.python.org/

Draft. Comments and Corrections Welcome!

• Install the xlrd50 library to read spreadsheet files (.xls extension) in Python,
via terminal with
pip install xlrd

• Until here, we have been copying the requirements of file WARNING.txt of
the folder 6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX.

• The tools above are sufficient to run the basic example, having no graphic
output, or the school project, which is entirely based on the graphical capa-
bilities of the Python turtle library (installed with Python). About turtles
see the Appendix D.

• If you want run the project production, graphically displaying networks,
the reference is WARNING bis - Production required libraries.txt in
the same folder above.

• Before installing matplotlib, it is useful to install scipy. Very useful infor-
mation are at https://www.scipy.org/install.html sub “Windows pack-
ages”.51

In this way you have also numpy installed (numpy is required by matplotlib).

If you want to avoid the scipy installation, you can install uniquely numpy
(see note 51):
pip install numpy

• Install matplotlib (http://matplotlib.org), via terminal with
pip install matplotlib

• Install NetworkX (https://networkx.github.io) with
pip install networkx

• Install52 pandas (http://pandas.pydata.org) with
pip install pandas

50https://github.com/python-excel/xlrd
51in case of an error signaling the file vcvarsall.bat as missing, run VCForPython27.msi from

http://www.microsoft.com/en-us/download/details.aspx?id=44266. It is the Microsoft
Visual C++ Compiler for Python 2.7.

52For the oligopoly project or in any case in which you need a database within SLAPP.

57

https://www.scipy.org/install.html
http://matplotlib.org
https://networkx.github.io
http://pandas.pydata.org
https://github.com/python-excel/xlrd
http://www.microsoft.com/en-us/download/details.aspx?id=44266

Draft. Comments and Corrections Welcome!

Appendix B

On SLAPP execution

SLAPP runs only via a terminal or in IPython (jupyter notebook), using runShell.py
or iRunShell.ipynb.

In IPython, the magic command ‘%matplotlib inline’ is internally added if
missing; if ‘%matplotlib’ is the explicit choice, the ‘inline’ option is internally
stated.

In the main folder now we have runShell.py to start the shell in Python and
iRunShell.ipynb to start it in IPython (using jupyter notebook).

We do not explain here how to install Jupiter (https://jupyter.org), but a
short cut is

pip install jupyter

or

sudo pip install jupyter

Look at the contents of Appendix A about the use of pip.
We stop the execution if starting from IDLE or Spyder, for compatibility with

the graphic operations.53

53At http://matplotlib.org/users/shell.html we read “the python IDLE IDE is a Tkinter
gui app that does not support pylab interactive mode, regardless of backend”.

58

https://jupyter.org
http://matplotlib.org/users/shell.html

Draft. Comments and Corrections Welcome!

Appendix C

Problems with libraries

C.1 A warning about fonts coming frommatplotlib
1.5.1

matplotlib produces an annoying warning about creating fonts; to avoid it.
Several hints online suggest to delete the folders fontconfig or matplotlib that

you can find in folder .cache within your home.
Instead, in MacOS go to the folder .matplolib in your home and delete the

file fontList.cache.
The annoying warning will appear only one more time.

59

Draft. Comments and Corrections Welcome!

Appendix D

On turtles

The turtle library mimics the behavior both of NetLogo,54 of OpenStarLogo,55

and (partially) of StarLogo TNG56 agent-based shells. The name turtle attributed
to the agents in those shells (and in the Python related library) comes from Logo, a
special language of the 1960s. At http://el.media.mit.edu/logo-foundation/
what_is_logo/logo_primer.html we read that:

The most popular Logo environment has involved the Turtle, orig-
inally a robotic creature that moved around on the floor.

It can be directed by typing commands at the computer. The com-
mand forward 100 causes the turtle to move forward in a straight line
100 "turtle steps". Right 45 rotates the turtle 45 degrees clockwise
while leaving it in the same place on the floor. Then forward 50 causes
it to go forward 50 steps in the new direction.

With just the two commands forward and right, the turtle can be
moved in any path across the floor. The turtle also has a pen which
may be lowered to the floor so that a trace is left of where it has
traveled. With the pen down, the turtle can draw geometric shapes,
and pictures, and designs of all sorts.

(. . .)
The turtle migrated to the computer screen where it lives as a

graphics object. Viewing the screen is like looking down on the me-
chanical turtle from above.

But . . . why the name turtle? In Epstein (2014, p.88) we have a nice and openly
subjective explanation:

54https://ccl.northwestern.edu/netlogo/
55http://web.mit.edu/mitstep/openstarlogo/index.html
56http://education.mit.edu/portfolio_page/starlogo-tng/

60

http://el.media.mit.edu/logo-foundation/what_is_logo/logo_primer.html
http://el.media.mit.edu/logo-foundation/what_is_logo/logo_primer.html
https://ccl.northwestern.edu/netlogo/
http://web.mit.edu/mitstep/openstarlogo/index.html
http://education.mit.edu/portfolio_page/starlogo-tng/

Draft. Comments and Corrections Welcome!

NetLogo’s name for a generic agent is “turtle”. I choose to imagine
that this is in honor of a famous exchange between Bertrand Russel
and an audience member who told Russel that the earth was supported
on the nack of a great turtle. Russel asked, ‘And what, pray tell, is
supporting that turtle?’ The answer was immediate. “Oh, another
turtle . . . it’s turtles all the way down.”

My humble explanation is less fasinating: when I was told about Logo for the
first time, in the 1970s, they explained me that the original robot-agent was named
turtle . . . because it was slowly moving and, above all, because—being Logo aimed
to interact with boys and girls of the primary school—the name turtle was less
intimidating than robot.

Anyway, what is crucial is that NetLogo and StartLogo TNG (deriving from
what now is named OpenStarLogo) have their roots in Logo and turtles (in Fig.
D.1 the logo of the Logo Foundation).

Figure D.1: The Logo Foundation, at
http://el.media.mit.edu/logo-foundation/

61

http://el.media.mit.edu/logo-foundation/

Bibliography

Boero, R., Morini, M., Sonnessa, M. and Terna, P. (2015). Agent-based Models of
the Economy Agent-based Models of the Economy – From Theories to Applica-
tions . Palgrave Macmillan, Houndmills.
URL http://www.palgrave.com/page/detail/agentbased-models-of-the-
economy-/?K=9781137339805

Downey, A. B. (2012). Think Python. How to Think Like a Computer Scientist.
O’Reilly Media, Inc., Sebastopol, CA.
URL http://www.greenteapress.com/thinkpython/

Elkner, J., Downey, A. B. and Meyers, C. (2013). Learning with Python:
Interactive Edition 2.0 . How to Think Like a Computer Scientist. Runestone
Interactive.
URL http://interactivepython.org/runestone/default/user/login?
_next=/runestone/default/index

Epstein, J. M. (2014). Agent_Zero: Toward Neurocognitive Foundations for Gen-
erative Social Science. Princeton University Press.

Minar, N., Burkhart, R., Langton, C. and Askenazi, M. (1996). The Swarm Simu-
lation System: A Toolkit for Building Multi-Agent Simulations . In «SFI Working
Paper», vol. 06(42).
URL http://www.santafe.edu/media/workingpapers/96-06-042.pdf

Sargent, T. and Stachurski, J. (2013). Quantitative Economics .
URL http://quant-econ.net

62

http://www.palgrave.com/page/detail/agentbased-models-of-the-economy-/?K=9781137339805
http://www.palgrave.com/page/detail/agentbased-models-of-the-economy-/?K=9781137339805
http://www.greenteapress.com/thinkpython/
http://interactivepython.org/runestone/default/user/login?_next=/runestone/default/index
http://interactivepython.org/runestone/default/user/login?_next=/runestone/default/index
http://www.santafe.edu/media/workingpapers/96-06-042.pdf
http://quant-econ.net

Index

.txtx files, 40
$$slapp$$, 20

action container, 29–31
adding or eliminating tasks, 35
AESOP, 29
agent creation, 38
Anaconda, 52

classes in SLAPP, 42
computationalUse in world state, 33

debug, 45

embarrassingly parallel problems, 48
end, 24

files .txtx, 40
Future developments about agents, 41

if structure, 34
installing SLAPP, 52
IPython, 49
IPython notebook, 49

jupyter notebook, 49

Libraries for SLAPP, 52
Libraries to use SLAPP, 4
Linux, 53
local code execution, 28

Mac OS X, 54
macros, 32, 34
matplotlib 1.5.1 warning (fonts), 59
Model, 22

multi-class, 42

Observer, 22
oligopoly, 47
operating sets of agents, 39

parallel computations, 48
parameters in classes, 43
predefining a default project, 20
problems with libraries, 59

running SLAPP, 19

schedule, 22, 23, 25
schedule.xls, 30
scheduling hierarchy, 29
set of agents, 39
setting action probabilities, 31
simulation engine, 20
size of the graphic pictures in IPython

notebook, 49
Size or the pictures in IPython notebook,

49
SLAPP execution, 58
specialUse in world state, 33
spreadsheet formalism, 30
starting SLAPP from a Jupiter QtConsole-

, 20
starting SLAPP from a terminal with

IPython, 20
starting SLAPP from a terminal with

jupyter notebook, 20
starting SLAPP from a terminal with

Python, 19

63

Draft. Comments and Corrections Welcome!

starting SLAPP from Spyder using the
IPython console, 20

Swarm, 5, 6, 22, 29
swarmapps original file, 6

time loops, 31
toBeExecuted, 24
turtle graphics and IPython, 50
turtles, 60
types of agents, 39

Ubuntu, 53

width and the height of the graphic pic-
tures in IPython notebook, 49

Windows, 55
world state, 32
WorldState, 32

64

	Introduction
	SLAPP and Swarm
	Libraries to use SLAPP
	SLAPP online
	The README and the related files: discovering the two contents of SLAPP
	Using SLAPP as a tutorial on agent-based programming foundations
	Using SLAPP as an agent-based shell

	The basic project as a guide to the making of a new project
	How to run SLAPP
	Scheduling
	The scheduling mechanism at the level of the Observer
	The scheduling mechanism at the level of the Model
	The detailed scheduling mechanism within the Model (AESOP level), with WorldState and macros
	The WorldState feature as a variable repository
	The WorldState feature as a computational tool
	The macros
	The if structure
	Agents adding and eliminating tasks into the detailed schedule

	The agents and their sets
	Sets of agents
	The use of files .txtx to define the agents
	Future developments about agents

	SLAPP multi-class: the basic2classes example
	Introducing the example

	Debugging a new project: the debug project as a micro tutorial
	Other existing and upcoming projects
	Adding turtles: the school project
	Adding networks: the production project
	New projects and extensions
	Connecting to R, via Rserve
	Connecting to other applications, via Redis
	Parallel computations in SLAPP

	SLAPP in IPython/Jupyter
	Running SLAPP in an IPython/Jupyter notebook
	Size or the pictures in IPython/Jupyter notebook
	Turtle graphics and IPython

	Appendices
	Libraries for SLAPP
	Using Linux (via the Ubuntu distribution)
	Using Mac OS X
	Using Windows (referring to Windows 10)

	On SLAPP execution
	Problems with libraries
	A warning about fonts coming from matplotlib 1.5.1

	On turtles
	Bibliography
	Index

