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The cross-target method

Outline of the chapter
In this chapter we introduce an ANN technique developed to build AAAs

without using a priori economic rules. Section 4.1 deals with the meaning
of developing such models and introduces the structure of the method.
The core of the technique is explained first and then some sophistications
are introduced, the possibility of tuning AAAs’ behaviour.

In section 4.2 the method is gradually applied, from simple to complex
cases, also allowing interaction and imitation among agents. Experiments
start, in section 4.2.1, with a simple analysis of motion behaviour, made
by agents foraging for food learning while acting and relearning from their
experience. Learning by imitation is then introduced, developing agents
able to do a specific task and studying their internal structures.

In sections 4.2.2 agents are supposed to behave in an economic context,
starting with one-agent models describing a consumer reacting to price
changes and a risk-averse stock market agent: the capabilities of the two
agents come from micro-mechanisms developed by this method. The
framework of the stock market model is described in section 4.2.3.

In section 4.2.4 we introduce external objectives in one-agent models;
in sections 4.2.5 and 4.2.6 we use models of interacting agents, with two
different populations and introducing both external objectives and external
proposals: we will see high rationality behaviour emerging from random-
ness and imitation.

4.1 The cross-target method

We must, first of all, explain the name and the idea that exists behind the
name. The name ‘cross-targets’ (CTs) comes from the technique used to
figure out targets in a class of models founded upon artificial adaptive
agents whose main characteristic is developing some kind of internal consis-
tency. Our agents are developed by neural networks; we can specify two
types of outputs of the ANN upon which we build each AAA: (1) actions
to be performed and (2) evaluations of the effects of those actions. With
our technique, both the targets necessary to train the network from the
point of view of the actions, and those connected with the effects, are
built in a crossed way. The former are built in a consistent way with the
outputs of the network concerning the guesses of the effects, in order to
develop the capability of deciding actions close to the expected results.
The latter are similarly buile in a consistent way with the outputs of the
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network concerning the guesses of the actions; here, we will improve the
agent’s capability to estimate the effects emerging from the actions that
the agent itself is deciding.

What is the idea behind such a mechanism? Our hypothesis is that an
agent acting in an economic environment must develop and adapt his or
her capability to evaluate in a coherent way what he or she has to do in
order to obtain a specific result or to appreciate the consequences of a
specific action. The same is true if the agent is interacting with other
agents of the same population or of other populations.

Beyond consistency, we can add other characteristics, mainly to obtain
the possibility of tuning agents to make experiments.

4.1.1 Developing models without a priori rules

The CTs technique attributes a central role to learning mechanisms and
can be applied without introducing, either explicitly or implicitly, economic
rules in order to influence or to characterize agents’ behaviour. The aim
is to conduct economic experiments without the influence of any prior
economic hypothesis (Terna, 1991, 1992a, 1992b, 1993a, 1993b).

We will see that CTs can reproduce economic subjects’ behaviour, often
in internal ‘ingenuous’ ways, but externally with apparently complex results.
Mainly, economic behaviour, simple or complex, can appear directly as a
by-product of developing consistency between (1) decisions about actions
and (2) guesses about effects. For an external observer, this kind of AAA
is apparently operating with goals and plans. Obviously, it has no such
symbolic entities, which are inventions of the observer. The similarity that
we recall here is that the observations and analyses about real-world agents’
behaviour can suffer from the same bias.

Certainly, the CT algorithm introduced here is not the only way of
dealing with AAAs, but it represents an interesting tool because it doesn’
require injections of rules, optimizing behaviour or planning capabilities,
but only a limited computational ability: that necessary to take simple
decisions and to compare guesses with results.

4.1.2 The cross-target technique

Following other authors’ work (Parisi ez al., 1990), we choose the neural
approach to develop CTs mostly as a consequence of the intrinsic adap-
tive capabilities of neural functions. Here we will use feed-forward
multilayer ones.

Targets in learning process are: (1) on one side, the actual effects of the
actions made by the simulated subject; (2) on the other side, the actions
needed to match guessed effects.

Figure 4.1 describes an AAA’s learning and behaviour in a CT scheme.
The AAA has to produce guesses about both its own actions and their effects,
on the basis of an information set (the input elements are I, . . ., I,). Actual
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effects are estimated through the guessed actions, also taking into account
the consequences from the interaction among agents, if any; the results are
used to train the mechanism that guesses the effects. Actions that we mea-
sure to be necessary to match guessed effects are, on the contrary, employed
to train the decision mechanism about actions. In the last case we have to
use inverse rules, even though some problems arise when the inverse is inde-
terminate.

The CTs method, introduced to develop economic subjects’ autonomous
behaviour, can also be interpreted as a general algorithm useful for build-
ing behavioural models without using constrained or unconstrained
optimization techniques. The kernel of the method, conveniently based
upon ANNs (but it could also be conceivable with the aid of other
mathematical tools), is learning by guessing and doing: the control capa-
bilities of the subject can be developed without defining either goals or
maximizing objectives.

The CT method can appear to be related to the Temporal Difference
(TD) Learning of Barto and Sutton (Sutton, 1988; Tesauro, 1992), which
learns from the differences between temporally successive predictions — or
action outcomes — of the system, having a final target perfectly known at
the end of the run. In the TD method we have a special and powerful
case of true supervised learning, where an external teacher can suggest
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Figure 4.1 The cross-target construction.
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correct target values. Also TD, like CT, addresses the issue of consistent
learning, but with delayed feedback founded upon a true target value; CT
uses immediate tentative targets, self-generated and never corrected by an
external teacher. The aim of CT is in effect to generate time paths for
relevant variables, without any final or intermediate externally known
objective, operating only with simple rules to adapt both behaviour and
predictions.

Now we may introduce some technical explanations of CTs, with the
aid of the general scheme of Figure 4.1, observing that (1) the inputs of
the model are mainly data coming from the environment or from other
agents behaviour, (2) they can be dependent on or independent of the
previous actions of the simulated artificial subject, and (3) targets are
known only when actions take place.

The CT algorithm is a learning and acting one: action is necessary to
produce the information from which we can construct targets to train the
ANN that simulates the subject. A training set cannot be constructed here
in the usual way because the rules linking the inputs and outputs of the
ANN have ‘to be discovered’ by the experiments led by AAAs. Learning
and acting take place in four steps each ‘day’ a day is the sum of the four
steps required to perform a full cycle of estimation of outputs and of back-
propagation of errors, correcting the neural network weights. Initial weights
are randomized in a given range.

Looking at Figure 4.1, the four steps can be introduced in the following
sequence.

1. Outputs of the ANN: The actions to be accomplished, reported on
the right side of Figure 4.1, and the effects of these actions, reported
on the left side of the same figure, are guessed following inputs and
network weights.

2. Targets for the left side of the network: The targets for the effects
supposed to arise from actions, as guessed in the left side of the
output layer in Figure 4.1, are figured out by the independently
guessed actions. In this way, guesses about effects become closer to
the true consequences of actual actions.

3. Targets for the right side of the network: The differences measured
in step 2 between targets and ANN outputs on the effect side can
be inversely interpreted as starting points for action modifications, to
match the guessed effects. So they are used to build the targets for
the mechanism that guesses the actions. Since the inverses of the
formulas shown below are often undefined, corrections are shared
randomly among all the targets to be constructed; besides, when
several corrections concern a target, only the one with the largest
module is chosen. In this way, we would like to imitate the actual
behaviour of a subject requested to obey several independent and
inconsistent commands: probably the most imperative, here the
largest value, will be followed.
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4.  Back-propagation: Learning takes place, correcting weights in order
to obtain guessed effects closer to the consequences of guessed actions,
and guessed actions more consistent with guessed effects. Thus, we
have two learning processes, both based upon the guesses of the
elements of the opposite side of the network.

This double-sided process of adaptation, with interaction among agents
and long-term learning introduced at the end of this section, ensures the
emergence of non-trivial self-developed behaviour, from the point of view
of the time paths of the values generated by the outcomes of the agents.

We can now explain in a formal way the acting and learning algorithm
of CTs, introducing a generic effect E, arising from two actions, named
A; and A,. The target for the effect is:

E" = f(As, Ay) (4.1)

where f is a definition, linking actions to effects on an accounting basis.

Our aim here is to obtain an output E; (the guess made by the network)
closer to E,’, which is the correct measure of the effect of actions A; and
A,. The error related to E,; is:

C=E1,—E1

or, by convention in ANN development, one half of the square of
E," — E;. To minimize the error, we back-propagate it through network
weights.

Our aim now is to find actions, as outputs of our network, more consis-
tent with the outputs produced by the effect side. So we have to correct
A; and A, to make them closer to A;” and A,’, which are actions consis-
tent with the output E;. We cannot figure out the targets for A; and A,
separately. From equation 4.1 we have:

A = gl(Ell) Aj) (4-2)
A, = gz(Ef, Al) (4-3)

Choosing a random value 7, from a random uniform distribution whose
support is the closed interval [0, 1] and setting 7, = 1 — T, from equa-
tions 4.2 and 4.3 we obtain:

AY = gl(El, - eT, Ay) (4-4)
Az’ = gz(El' — €Ty, Al) (4-5)

Functions g; and g,, being obtained from definitions that link actions to
effects mainly on an accounting basis, usually have linear specifications; so
equations 4.4 and 4.5 generally give solutions that are globally consistent.
The errors to be minimized are:

4 = Al, - A
a = AZ, — Az
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Equations 4.4 and 4.5 would be unacceptable as inversions of true dynamic
functions, but they are used here as a simplifying tool (mainly for the pres-
ence of random separation obtained by 7, and T, values), always to generate
time paths for variables, without a priori or external suggestions.

When the actions determine multiple effects, they are included in
multiple definitions of effects. So, those actions will be affected by several
corrections; as reported in 3 above, only the largest absolute value is
chosen.

Input and target variability, generated in both deterministic and random
ways, is required to ensure the economic plausibility of the experiments,
but is also necessary to ensure that the outputs and the targets of the ANN
change. Lacking such variability, on the basis of the initial random weights
of the network and following CTs, in most cases all outputs would be
frozen at about 0.5, with perfect but merely apparent learning results.

With the proper variability, we repeat for a given number of cycles (days)
the four steps introduced to describe Figure 4.1. The learning following
the fourth step of each day gives a sort of local adaptation to the changes
of the environment.

Analysing the changes in the weights during the process we can show
that the matrix of weights linking input to hidden elements has little or
no changes, while the matrix of weights from hidden to output layer
changes in a relevant way. Only hidden-output weight changes determine
the continuous adaptations of ANN responses to the environment modi-
fications, as the output values of hidden layer elements stay almost constant.

This situation is not caused by linear separability of the problem (see
section 3.3.1 where the XOR function represents a classic case of a linear
inseparable problem), as we can verify by applying the long-term learning
explained above, but it is the consequence of very small changes in targets
(generated by the CT method) and of a reduced number of learning cycles.

The resulting network is certainly under-trained (see also section 3.1.5).
Consequently, the simulated economic agent develops a local ability to
make decisions, but it has difficulties in coping with large environmental
changes. This case resembles an actual consumer who is not able to deter-
mine his/her demand if prices change dramatically.

This is short-term learning as opposed to long-term learning, in analogy
with the psychologists’ distinction between short- and long-term memory: |
(1) the learning and acting phase produces neural agents continuously |
modifying their weights, in a local way, to adapt to environmental changes;
(2) ex post, relearning the weights of the neural networks engaged in the
experiment and using as data the historical records of the events that have
occurred, we can obtain ANNs also able to react, without subsequent
learning, to major changes in environmental conditions.

The second type of learning can also take place periodically upon a
short segment of data (for example, every fifty days referring to the previous
one hundred days — or upon a sample of the full historical data set, always
with satisfying results).
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We will introduce two examples of long-term learning: the first in section
4.2.1, related to a little experiment of motion, and the second at the end
of section 4.2.6, to develop a long-term trained agent behaving in the
stock market. From the structure of such an agent we will extract the rules
implicitly developed, as in section 3.3.5.

4.1.3 Cross-targets, external goals and external proposals

With CTs we obtain agents that behave on the basis of the development
of consistency among guesses about their actions and related effects. This
sort of consistency is sufficient to obtain self-developed micro-mechanisms,
as reported in the connectionist robot literature (Connell, 1990), which
are very simple, but sufficient to characterize realistic economic behaviour.

To improve the capabilities of CTs in the development of economic
experiments and to offer to the experimenter useful tools directed to
the tuning of the agents’ behaviour, some improvements on the method
can be introduced: (1) the use of external objectives (EOs), to direct the
guesses of the effects, and (2) the use of external proposals (EPs) to influ-
ence the guesses about actions. EPs and EOs are external targets: the EO
replaces the cross-target to train the specific output processing element,
but the original CT target survives for the crossed training of the actions;
any EP represents one of the multiple targets — from which only the largest
is chosen — used to train the side of the model that guesses the actions.

Simple examples of EOs are the following: for a household, obtaining
a good match between food purchase and food requirement, increasing
money at a constant rate or not working more than a maximum, etc.; for
an entrepreneur, maintaining a constant difference between costs and bene-
fits, etc.

EPs suggest actions: the source of the suggestions can also be random-
ness, which is for example sufficient in section 4.2.6 to explain in a radical
way what apparently could be the effects of reason. Another kind of EP
is imitation, which is a powerful means of exchanging information
among agents; imitation is well known to sociologists, but it is almost
unknown in economic models, where agents exchange information mainly
by prices.

In conclusion, EOs are targets used to train the side of the ANN that
guesses the effects, while EPs represent one of the multiple targets used to
train the side of the model that guesses the actions.

4.2 Experiments with cross-targets

We now introduce several experiments developed with the CT method,
mainly in the field of economics. Before doing so, however, we will present
two analyses of artificial behaviour: (1) subjects foraging for food on a
plane, with imitation of other subjects’ actions; (2) subjects learning to
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solve a problem by imitation. The role of these experiments is to intro-
duce some technique capabilities in our work, such as learning repetition
and imitation, starting with very simple situations in a stylized environ-
ment.

In the examples, we will look both for emerging aggregate behaviour
and try to discover the internal mechanisms, often micro-mechanisms,
generating the behaviour of each agent. Some very interesting results in
the connectionist literature about robots (e.g. Beer, 1990; Connell, 1990;
Mel, 1990) stress the importance of uncorrelated mechanisms governing
independent single minimal aspects of the apparent global action of a
connectionist robot, whose complexity is the consequence of those inde-
pendent functions.

With Connell (1990), we have: ‘Like Simon’s metaphorical ant (Simon,
1969) the complexity of a creature’s action is not necessarily due to deep
cognitive introspection, but rather to the complexity of the environment
it lives in.” R.A. Brooks, introducing Connell’s book (Connell, 1990):
“... has shown how a robot can appear to an observer to be successfully
carrying out high level tasks, seemingly with goals and motivations, persis-
tence and plans. In fact, as we read his description we find that the robot
has no such entities. They are inventions of the observer.’

For an observer, the behaviour produced by the AAAs of our models
also seems to match the actions of realistic economic actors, appearing to
be rational, as if they operated with goals and plans. Obviously, our agents
have no such symbolic entities, which exist only in the observer’s mind.
The assumption is that the observations of economists about real-world
agents’ behaviour could suffer from the same bias.

Finally, we stress the following aspect: operating only on the basis of
the development of agents’ consistency, CTs develop behaviour without
optimization, always explaining actions and their effects in a simple and
‘parsimonious’ way.

4.2.1 Simple preliminary experiments

We now introduce the two preliminary experiments proposed in section
4.2, which are useful both for explaining the role of the repeated ex-post
learning proposed at the end of sections 3.1.5 and 4.1.2, and for presenting
the capabilities of random or imitative behaviour in explaining complex
situations.

(a) Agents foraging for food
The experiment on the motion of agents foraging for food is built upon
the following scheme.

On a plane with (x,y) coordinates, the subject is initially in (10, 10)
while the food is fixed in (0, 0). The ANN simulating the subject has as
inputs (which are the targets founded in the previous cycle):
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X(t-1), the position in the x direction at time t-1;

Y(+-1), the position in the y direction at time t-1;

dX(t-1), the step in the directions x, at time t—1 (bounded in the
range +1);

dY(t-1), the step in the directions y, at time t—1 (bounded in the range
+1).

Using CT terminology, the same ANN produces as outputs two guesses
about effects and two guesses about actions.
Guesses about effects are:

X(1), Y(1)

Guesses about actions are dX(t) and dY(t), all with the same meaning of
the input values.
Targets are:

X)) = X(=1) + dX(v);

Y@® = Y1) +dY(@);

dX'(t) = dX(t) + X(t) — X’(t), which is the correct action to match
X(v), increasing dX(t) if X(t) — X'(t) > 0 and decreasing it
in the opposite case;

dY’'(t) = dY(t) + Y(t) - Y'(t), as before.
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Figure 4.2 Moving towards food, without EO.
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Figure 4.3 Moving towards food, with EO.

Positions X(t) and Y(t) also have the meaning of measuring the distance
of the artificial subject from the food (the distance is evaluated by
employing rectangular coordinates). In Figure 4.2 we report the position
of the agent in 200 cycles of acting and learning; in each cycle, repre-
senting one day or step, the movement is determined by the action outputs
of the ANN. Each position is linked with the succeeding one, plotting a
continuous line. The agent goes towards the food on the basis of a simple
implicit mechanism, which also explains the locking situation in the middle
of the path.

The mechanism works in the following way: at the beginning of the
experiment the ANN produces random outputs, but in a small interval
around the central value between the minimum and maximum ones. This
effect is always present and is easily explained by considering the conse-
quence of the initial random choice of the weights, which gives on average
a null sum of the inputs of the sigmoidal transformation. In the case of
the logistic functions, that input gives an output about 0.5, which also
corresponds to the simple mean between minimum and maximum values.
The initial guesses about the effects of the movement give estimated
positions around the point (0, 0), where the food is placed, with large
variability; this result emerges from the range [-20, 20] assigned to the
spatial coordinates. CTs immediately correct these wrong estimates, but
they also correct the guesses about actions (the movements), to develop
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Figure 4.4 Moving towards food, following an ANN with weight coming
Jfrom repeated learning.

their consistency with the guesses of effects. So, the artificial agent moves
in the correct direction, but the process rapidly goes into a locking situ-
ation, with mutual consistency between effects and actions.

If we now impose an EO on the side of the effects, namely the target
of reducing the distance from the food, in each cycle, to 75% of the
distance in the previous cycle (the measure of the distance from the current
position to the point (0, 0) is directly obtained by the rectangular coor-
dinates of the position), the food is easily gained, as reported in Figure
4.3. We underline that no suggestion is introduced about the direction of
the movement.

In Figure 4.4 we present the case of Figure 4.3 again, but with an ANN
whose weights come from a repeated learning process of 200 000 cycles.
The learning process is applied upon the full 200 cycles of historical data
of a single acting and learning run, in sequential order, with a 0.9
momentum coefficient.

The simulated agent reaches the food in a few steps (fewer than one
hundred), going directly towards it, despite some uncertainty.

We can now produce two GWMs (see section 3.3.5), the first related
to the agent described in Figure 4.3, representing the effect of short-term
learning (see section 4.1.2), the second related to the agent of Figure 4.4,
with the effects of long-term learning.
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The GWM of the agent of Figure 4.3 is the following; the rows repre-
sent the input values, that is, the targets of the previous cycle, while the
columns contain the output values.

Outputs X(t) Y(v) dX(t) dY(v)
Inputs
X'(t—1) -0.1035 -0.0171 0.0330 0.0017
Y (1) —0.0406 -0.0308 —0.0449 -0.0213
dX’ (1) 0.0381 0.0245 0.0144 -0.0125
dY’(e-1) —-0.0140 -0.0227 0.1088 0.0290

Clearly, with short-term learning, we have a limited amount of weight
correction, here only 200, determining soft links between each input and
each output; our ANN rapidly reacts in each cycle or day to the targets
coming from the CT mechanism mainly because, by construction, they
are never very different from the output values; so the adaptation is
obtained by changing the weights slightly, mainly those from the hidden
layer and the output layer. We can observe this kind of soft ANN struc-
ture in the GWM matrix.

We can also observe that other adaptive functions or algorithms could
be used, such as classifier systems, but with a lack of generality and without
the simple passage from short-to-long term learning that we are consid-
ering here.

Going to the long term, with the agent of Figure 4.4, we have the
following GWM, showing hard input—output links.

Outputs X(v) Y(v) dX(t) dY(v)
Inputs
X'(t=1) - 169111 - 5.7756 7.2730 40.0658
Y (1) -8.3577 -1.6650 6.1658 20.0175
dX’(e-1) -75.9463  —46.7457  182.9647 81.7869
dY'(e-1) -71.1736  —46.5281 99.4387 42.3390

To interpret this second GWM matrix, we will extract the implicit rules
developed by long-term learning. However, first of all we observe its values:
guesses about the position on the plane, evaluating the effect of the actions,
are influenced mainly by the action inputs. The reasons for this result,
which seems to be counter-intuitive, come from the strong links joining
input and output values about actions. The actions are strongly influenced
by the previous ones and so guesses about the position on the plane can
be founded upon previous actions, while actually they depend on the |
current ones. As an interpretation we can suggest that the subject has |
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memorized completely the sequence of steps necessary to reach the food
and acts to reproduce that sequence, regardless of the position in each day
or after each step. Is this global interpretation confirmed by a technical
analysis?

Considering the ANN weights after the relearning process, that is, the
ANN upon which the agent of Figure 4.4 is founded, we analyse the deriv-
atives between each output and all the inputs. For each output variable
we consider: (1) derivatives calculated for a hypothetical mean point of
input, where all variables assume their mean value (in the ANN metrics,
all the values are 0.5). These derivatives are called Mean Point Derivatives
(MPDs); (2) derivatives calculated for each pattern. In order to facilitate
the analysis of these results, we calculate the mean and the standard devi-
ation of the derivatives of each pattern. These derivatives are called Mean
Derivatives (MDs).

Output variable X(t)

inputs X'(t-1) Y'(e-1) dX’(t-1) dY'(t-1)
MPD 0.024 0.008 0.009 0.028
MD mean -0.016 —0.009 -0.144 -0.127
MD stdv 0.146 0.063 0.530 0.558

Output variable Y(r)

inputs X'(t-1) Y'(t-1) dX’(e-1) dY’(t-1)
MPD 0.009 0.003 0.003 0.010
MD mean -0.014 -0.004 -0.128 -0.127
MD stdv 0.088 0.027 0.461 0.494
Output varjable dX(r)
inputs X'(t-1) Y'(t-1) dX’(t-1) dY’(t-1)
MPD -0.071 -0.014 0.064 -0.127
MD mean -0.033 0.000 0.315 0.092
MD stdv 0.190 0.060 0.831 0.842
Output variable dY(t)
inputs X'(t-1) Y (1) dX’(t-1) dY’(e-1)
MPD 0.036 0.019 0.088 0.003
MD mean 0.080 0.040 0.140 0.041
MD stdv 0.176 0.081 0.202 0.184

To read these data we observe both the value of the derivative at the average
point and the standard deviation of the average of pattern derivatives: a
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large standard deviation can signal the existence of situations where a modi-
fication of the input value has an important role, even if the mean does
not appear to be relevant. We confirm here the previous interpretation: all
the output variables are mainly affected by the third and fourth input
values; we can see however that a location coordinate, that is, X'(t—1), also
has a role. The sequence of steps is self-determined, but also controlled
by a spatial coordinate. We can also investigate the implicit rules devel-
oped by the training process, following the method proposed in section
3.3.5.

In a CT exercise, the values of R? are not interesting, since the targets
can be interpreted as values suggesting corrections to develop consistency,
and not values to be approximated. To apply that method here, we have
to define the maximum R? result artificially, in order to get the R? values
obtained by introducing only subsets of the input values into the ANN;
as in section 3.3.5, the excluded inputs are set to their intermediate value
between minimum and maximum. The artificial R? is set to R? = 1, corre-
sponding to the result that we obtain by applying the ANN to a set of
data in which the targets are exactly the output values of the ANN after
the relearning process. (Alternatively, we could use the outputs vs the targets
of the relearning task, in which case R%<1.)

From the GWM values and MD analysis we can adopt the following
sequence in the additive rule construction, for all output variables: dX(t-1),
dY(t-1), X(t-1), Y(=1).

The X(t) reconstruction with limited input gives the following R? results:

Variables in input R?
dX'(t-1) -0.357
dX’(t-1), dY’(t-1) 0.121
dX'(t-1), dY’(e-1), X'(¢-1) 0.940

The Y(t) reconstruction gives:

Variables in input R?
dX’(-1) -0.304
dX’(t-1), dY’(-1) 0.588
dX’(t-1), dY'(+-1), X'(+—1) 0.980

The results show that data related to the previous movements are essen-
tial in explaining guesses about the agents current position, but only if
they are jointly considered. Furthermore, we have a near perfect ANN
performance when we introduce a spatial coordinate (the X).

The dX(t) reconstruction gives:
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Variables in input R?
dX’(t-1) 0.758
dX’(+-1), dY'(t-1) 0.849
dX'(t=1), dY’'(t-1), X'(t-1) 0.985

The dY(t) reconstruction gives:

Variables in input R?
dX'(t-1) 0.915
dX'(t-1), dY'(t-1) 0.696
dX'(e-1), dY'(e-1), X'(=1) 0.959

These results point to the specific importance of the previous steps and,
in the case of dY(t), of dX’(t—1). Therefore the movement in the x direc-
tion is the key in interpreting the behaviour of our AAA.

Certainly, we are discovering here a sophisticated agent structure with
interesting characteristics, reliable, but not easy to foresee before the exper-
iment. This result underlines the importance of the experimental approach:
we see complex results emerging from simple structures, built in a parsi-
monious way, without optimization capabilities. We are developing simple

12

’Z /
5 e

—2 T T T T T
-2 0 2 4 6 8 10 12

Figure 4.5 Moving towards food, with EPs coming from imitation.
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agents, or mechanisms, that are capable of achieving a goal. Again, is that
also the explanation of the behaviour of real agents? To understand more
about this issue, consider what happens if we introduce an imitative habit
in the model of the agent foraging for food.

The last analysis of this model is developing a population of similar
agents, all acting without an EO, like the one in Figure 4.2, but with
an EP (see section 4.1.3). In Figure 4.5 we have the itinerary towards
the food of an agent which has as an EP the instruction to imitate the
current movement, that is, the step in the x and y directions, of the other
agents.

The imitative mechanism works as follows: the agent whose action is
to be imitated is chosen randomly; the imitation occurs only if the action
of that agent is greater in absolute value than that of the imitating agent.
In the case of imitation, a random factor in the range [0,2] amplifies or
mitigates the two measures of the action (which is a step defined in the
x and y directions).

The artificial agents, without an EO, come close to the food. The reason
is that the choice of imitating another agent reproduces a situation of
inconsistency among CTs, from which — as seen before — the implicit
simple mechanism driving the agent restarts, avoiding locking situations.
Also note that if the imitated action is directed towards the food, the
consequence is immediately convenient; if the imitated action goes in the
opposite direction, the process corrects the error rapidly, always strength-
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Figure 4.6 Moving towards food, with random EPs.
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ening the global convergence process. In addition, when all agents are close
to the food, all act with small steps and the imitative process loses import-
ance.

If the EP is randomly generated, as in the case of Figure 4.6, the effect
of avoiding locking situations is replicated, but the random behaviour
prevails: it is more difficult to recognize a plan in this kind of artificial
crazy agent, which is in any case capable of going close to the food.

Finally, note that in these experiments imitation and chance seem to
have the same effect, but imitation can develop more subtle situations, as
one might expect.

Learning to solve problems by imitation

The second experiment with imitation involves agents learning to solve a
problem. Here we have several ANNs doing numerical products of their
two inputs, which belong to a given range and are equal for all the ANNGs.
Some of them receive correct teaching, with a target obtained by multi-
plying the two inputs; the others carry out their imitative behaviour, using
as their target the output of an ANN chosen randomly. The imitated ANN
can be one with correct teaching or one that imitates others.

Here the meaning of imitation is more relevant than that implicit in
the previous experiment, where imitation is mainly a source of noise.
Surprisingly, apparent rationality emerges from noise: this is the power of
experimental techniques. In this second case, the surprises are the capa-
bilities emerging in the imitative ANNs and of the strong similarities that
we can measure in the GWM of the imitating ANNG.

In a first run we have ten ANNS, one with the correct target (this ANN
is named T) and the other nine ANNs (named I) imitating randomly. In
a second run, there are ten T ANNs and 90 I ones .

In the first run, the GWM of the one ANN of type T (il and i2 are

the input values, ol the output one) is:

ol
il 18.45
i2 19.83

The GWMs of the nine ANNs of type I are presented as mean values,
with standard deviations in brackets; the matrices composing the GWMs
are different for each ANN, while GWMs (as a phenotype) are strongly
similar:

ol
il 10.78 (0.32)
i2 10.68 (0.30)
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In the second run, the GWMs of the ten ANNs of type T show high

variability; we summarize them in the following data:

ol
il 17.05 (2.89)
i2 18.31 (2.22)

The 90 ANNs of type I are again very similar in terms of GWMs:
ol
il 10.99 (0.42)
i2 10.90 (0.39)

The result in terms of similarity can be explained on the basis of the
following consideration: the I ANNs evolve towards a ‘mean’ of the
different existing structures, while the T ANNs maintain their structural
differences untouched, producing analogous results. We therefore discover
the influence of the environment in the development of both agents’ capa-
bilities and their structures.

4.2.2 Economic regularities in one-agent models

Now we introduce the theme of the economic regularities arising from CT
models, when used in an economic situation. Starting with the agents
actions in one-agent models, the following examples of simple mechanisms
directly developed by CTs will be introduced: (1) the capability of reacting
to price changes; (2) a characterization of portfolio decisions.

Reacting to price changes

The first simulated agent is making two independent guesses on the basis
of a single input, the price Pa Which changes exogenously by means of a
sin function plus a random noise. Guesses are: the quantity q, of the good
C, to be acquired; the expenditure x. Cross-targets are easily established
here with:

x' = Pa9a
Q% =q + (x—x)/p, = x/p,

where, on the one hand, x” is the true expenditure consistent with the
decision q,; on the other hand, q,” is the correct decision necessary to
acquire the quantity of A consistent with the guess x. If X" > x, the guess
of qa must be increased by the amount (x — x")/p and vice versa.

In Figure 4.7 we have prices and guessed quantities (qa_g) for a thou-
sand days of learning and acting; in the figure, we have chosen a sample
of one day every ten days. The simulated subject has self-developed its
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Figure 4.7 Experimental reactions to different price levels.

capability of reacting to price changes, smoothing the effects on its level
of expense by quantity adjustment: what is emerging is a kind of demand
curve without optimization. What is surprising is that the mechanism,
albeit very simple, is autonomously and endogenously developed by the
model.

Things go as follows: when the price changes, the cross-target mecha-
nism determines two symmetrical corrections. Let us suppose that the price
is augmented. The neural network outcomes, at the beginning of the
learning process, are very conservative. Consequently, in short-term runs
(see section 4.1.2 for details of short-vs long-term learning), the guesses
about the expenditure (the effect) and the quantity (the action) adapt
themselves very slowly to the changing input. The expenditure evaluation
will therefore be underestimated and corrected by increasing it; vice versa,
the quantity, which has to be consistent with the guess about the expense,
which is underestimated, has to be corrected by decreasing it. We thus
have two symmetrical corrections, less relevant than those that we could
obtain separately by acting upon only one of them, keeping the price ot
the quantity constant. Realistically, the results are neither strictly exact nor
deterministic. Is this a demand curve? In a strict sense it is not, but it
describes common behaviour very well!



