
This is absolutely a DRAFT, please do not quote - v. 0.0.5

Workers, Skills and Firms: a Simulation Model with jES Open Foundation ϒ

Pietro Terna

(September 2004)

Dipartimento di Scienze economiche e finanziarie G.Prato, Università di Torino, Italia
pietro.terna@unito.it

How would he look, to see his work so noble
Vilely bound up? (…)

Shakespeare, Winter's Tale

?. ABSTRACT

The simulation model is based on jES (java Enterprise Simulator) and jESevol, or
“Evolutionary java Enterprise Simulator”. Both the packages are based on Swarm.

jES is a large Swarm-based package aimed at building simulation models both of actual
enterprises and of virtual ones. jESevol simulates systems of enterprises or production units in
an evolutionary context, where new ones arise continuously and some of the old are dropped
out.

The environment is a social space with metaphorical distances representing trustiness and
cooperation among production units (the social capital). The production is represented by a
sequence of orders; each order contains a recipe, i.e. the description of the sequence of
activities to be done by several units to complete a specific production.

Two units can cooperate in the production process only if they are mutually visible in our
social network. Units that do not receive a sufficient quantity of orders, as well as the ones
that cannot send the accomplished orders to successive units, disappear. New enterprises
continuously arise, in the attempt of filling the holes of our social network. A complex
structure emerges from our environment, with a difficult and instable equilibrium whenever
the social capital is not sufficient.

In a parallel way, other layers of the economic structure can evolve, always in an agent base
perspective: banking system, employment structures, …

In this paper the focus is related to employment: when an enterprise produces a good, the
sequence of the activities must match the presence of working units with the required skills.
In this context a fine grain description of the steps in the recipes is needed.

Adequate labor units can be lacking, or might simply be already hired, thus fostering the
emergence of competition among production units in the hiring process

Products change over time; as a consequence, productions units and labor skills have to adapt
continuously, with co-evolutionary effects.

ϒ related to jesopenfoundation-0.1.40

 2

?. THE MODEL

The starting point is the global worker stratum (stratum 0), with an initial presence of the
types of workers (types 1, 2 and 3).

We launch in each cycle the order to the units representing the workers of reproducing near
the copied unit, via a computational step2; unit in the workers’ stratum (stratum = 0) are also
created via the ordinary process of unit creation set in jesopenfoundation.scm.

We launch also three recipes3 ordering to all the units with the same production phase of the
unit receiving the order (which is sent to three units, having phase 1, 2 and 3) to display
themselves on a specialized stratum: unit able in doing phase 1 on stratum 1, etc.
(remembering that the first stratum is 0 numbered).

In stratum 4 we place a structure of firms, of type 1001, 1002, 1003 (production phases) and
the we launch recipes of medium complexity using an OrderGenerator (in each other strata
we have an OrderDistiller, using recipes and sequences, but in strata 2 and 3 with empty
sequences). In the forth stratum units cooperates on the basis of their (increasing)
intervisibility. New units are created with a low probability.

?. THE MODEL V.0

Initially we set as parameters for the stratum 4 the same values used for the jESevol
simulation, case 5.3, adopting also that dimension for the rasters, but with only 3 types of
units e 3 potential unit per type (it was 5 types with 2 potential units per type).

This ingenuous version, with the firm interacting and the worker evolving in a total
independent way, is created only to test the model e to evaluate the behavior of the
enterprises, with 1000 simulation ticks, in some way corresponding to 25 years of actual time
(as showed in the presentation of jESevol to the 2004 SwarmFest).

It is frozen in apps/workers_skills_firms/workers_skills_firms_v_0/ folder.

2 1103 – this computational code creates a copy of the unit the order is in the model stratum of the original unit,
near to it with the standard placement rule, with the probability set in position 0,0 of the first received matrix; the
count of the created units is reported increasing by one the position 0,1 of the second received matrix; finally it
changes the status to done.
3 Using 1251, 1252 and 1253, referring to rows 1, 2 and 3 of matrix 0 (remember that the first row is row 0);
these computational steps call internally the step 1250, which apply the step 1110 to a list of units.
Computational operations with code -1110 (a code for the jES Open Foundation extension): this computational
code creates a copy of the unit the order is in, in the same x,y place of the copied unit, but in another model
stratum, with the probability set in position 0,0 of the unique received matrix; the created unit is set in the
stratum indicated in position 0,1 of the unique received matrix; the unit is created, with the above probability, if
the content of the unit memory matrix in position 0,0 is positive (the actual position can be modified via the
calling step, i.e. 1210 in tutorial step3c); if the destination position in the new stratum is occupied the new unit is
not created, without any advice; the new unit is not created if the original one is in the destination stratum; the
new unit has the same visibility of the old one; finally, the computational step changes the status to done.
c1110 is not normally utilized directly but via a special computational step (i.e. 1250 here) setting the position
and content of the cell (<=0 or >0) indicated above; the memory matrix of the copied unit is shared among the
original unit itself and its copies, avoiding the creation of new matrixes for the copies.
c1250: to have units displaying on another stratum we use the computational step 1250 (a code for the
workers_skills_firms application), which acts via the 1110 code; this code, when received by one unit in a
stratum via a recipe, acts vs. all the units of the same type (i.e., with the same production phase) in all strata
(excluding those of the destination stratum), copying them on the destination stratum.
With c1251, c1252 and c1253 we apply c1250 to the cases of the units type 1, type 2 and type3.

 3

Figure ?. Version 0, no links between firms and workers

Matrix 0 is:
Probability for
recipe 1, 2 or 3 in
stratum 0, adding
workers

count of the added
workers of the 3
types

Probability for
recipe 4 in stratum
0, displaying
workers of type 1
in another stratum

the stratum where
to display units of
type 1

Probability for
recipe 4 in stratum
0, displaying
workers of type 2
in another stratum

the stratum where
to display units of
type 2

Probability for
recipe 4 in stratum
0, displaying
workers of type 3
in another stratum

the stratum where
to display units of
type 3

?. THE MODEL V.1 (WORKERS ARISING NEAR OLD ONES, IN A BALANCED WAY)

With the same set of parameters for the stratum 4 and the same rules for workers creation,
now we introduce recipes – in the OrderDistiller of stratum 0 – going from units-firms of the
three types (production phases 1001, 1002, 1003) to …

 4

The copied units are created with the computational step 1111 (called via 1251, 1252, 1253
and 1250), acting as the step 1110, but with the use of an addendum (100 in our case) to
modify the production phase of the unit created as copies.

The Matrix 0 now is:
Probability, for
recipe 1, 2 or 3 in
stratum 0, of
adding workers

count of the added
workers of the 3
types

probability for
recipe 4 in stratum
0, displaying
workers of type 1
in another stratum

the stratum where
to display units of
type 1

amount (integer value of the
addendum) to be added the
production phase of the units
created as a copy of an
original unit

probability for
recipe 4 in stratum
0, displaying
workers of type 2
in another stratum

the stratum where
to display units of
type 2

amount (integer value of the
addendum) to be added the
production phase of the units
created as a copy of an
original unit

probability for
recipe 4 in stratum
0, displaying
workers of type 3
in another stratum

the stratum where
to display units of
type 3

amount (integer value of the
addendum) to be added the
production phase of the units
created as a copy of an
original unit

Using 1111 with the 100 addendum, we assign production phases 101, 102 and 103 to the
copies of the units (workers) placed in strata 1, 2, and 3; the original (copied) units-workers
have production codes 1, 2 and 3. In this way, recipes moving from units-firms (production
phases 1001, 1002 and 1003) to units-workers (production phases 1, 2 and 3) can only find
the original units of stratum 0 and are not interested to the copies created in strata 1, 2 and 3,
where we want to represent the space diffusion of the professional skills.

Via the 12204 computational step we increase both the counter of the days-ticks a worker has
been active (memory matrixes of the units-workers in position 0,0) and the counter of the
days-ticks time units-workers the unit-firm has used (memory matrixes of the units-firms in
position 0,0).

The new fifth row line of the Matrix 0, considering 7 columns (cols form 4th to 7th are empty
in the preceding rows) is now:
addendum for po-
sition 0,0 (plus a0,
b0 displacements) of
the memory matrix
of the unit the order
is in (the worker)

addendum for po-
sition 0,0 (plus a1,
b1 displacements)
of the memory
matrix of the unit
the order come from
(the firm)

A0 b0 A1 b1

4 The 1220 computational step uses the 1120 one, modifying the coordinates of the memory matrixes where to
apply the addenda, both in the unit the order is in and in the unit the order comes from. In this case the
displacement in the memory matrixes is zero, but as a trace for future modifications, this feature is fully
developed. The four coordinates (two for the memory matrix of the unit the order is in and two or the unit the
order comes from, are in positions 0,2; 0,3; 0,4, 0,5 of the second received matrix

 5

Now we clear the units-workers not employed or firms without employees via the C1297,
C1298 and C1299 computational steps (codes for the workers-firms model), to decrease
position 0,0 of the memory matrix of each unit by the content of position 0,5 of the second
matrix and dropping the unit if the content o f 0,0 is < of position 0,2 of the second matrix;
the usual trick of rd=k is used here; C1297, C1298 and C1299 act via C11995.

The last rows of Matrix 0 are similar: the first one for stratum 0 (the whole set of the
workers); the second one for strata 1, 2, 3 (specialized for workers’ skills); the last one for
stratum 4 (the firms)
acting probability
for time step
(units in stratum
0, using time and,
if any, moving
away),

count of moved
units (dropped)

Moving if the
value in row, col
of unit memory
matrix is < the
level set here

row of the
memory matrix
we refer to

col of the
memory matrix
we refer to

value to be
added to the
row,col position
of unit memory
matrix (zero if
we refer to a
copy of the
original unit)

To introduce two options in hiring strategies of the firms, in recipe0Data/ we have both
orderSequence.xls and orderSequence_with_high_hiring.xls (to be renamed
orderSequence.xls to be used); in the first file we launch 10 orders of each one of the types
11, 12, 13 (hiring orders); in the second file we launch 20 of them.

With new unit probability 0.2, increase visibility 0.5, 3000 cycles and hiring with a moderated
launch of recipes 11, 12, 13 (10 of each type per cycle), new workers with skills equal to that
of their neighbors, we obtain:

5 1199 – this highly usable computational code, when received by one unit in a stratum, acts vs. all the units of
the same type (i.e., with the same production phase) in all strata; actions: with the probability set in position 0,0
of the first received matrix, c1999 adds the value contained in 0,5 of the second received matrix to each unit
memory matrix a row and column reported in pos 0,3 and 0,4 of the second matrix; if the resulting content is <
the level contained in position 0,2 of the second matrix, the considered unit is dropped (if it is the unit the order
is in, also the order is dropped), counting the dropped units in position 0,1 of the second matrix (obviously, first
and second matrixes can be coincident).

 6

Figure ?. Version 1, new workers with skills equal to that of their neighbors

?. THE MODEL V.2 (WORKERS ARISING IN RANDOM POSITIONS, IN A BALANCED WAY)

Now we launch in each cycle the order to the units representing the workers asking for a
random generation of workers, via a different computational step6 if compared with v.0 and
v.1 of the model; unit in the workers’ stratum (stratum = 0) are also created via the ordinary
process of unit creation set in jesopenfoundation.scm.

The first row of Matrix 0 now is:
Probability, for
recipe 1, of adding
workers with
random skills

stratum in which to
search and create
the various types
of unit-workers

count of the added workers of
the 3 types

6 1201 – this computational step (a code for the workers_skills_firm model, but coming from the tutorial) acts
via c1101 and creates a new random unit in the model stratum reported in position 0,1 of the first received
matrix, with the probability set in position 0,0 of the same matrix and increases the position 0,2 of the second
received matrix by 1, to count the created units; created units are chosen randomly (here of types 1, 2 or 3).

 7

Figure ?. Version 2, new workers with skills randomly distributed in the stratum space

?. THE MODEL V.3 (WORKERS ARISING NEAR OLD ONES, IN AN UNBALANCED WAY)

The V.3 of the model is based on V.1, but in each cycle instead of launching 10 order of new
workers creation for each type of skill (skills 1, 2 and 3), we launch 16 orders for skill 1 and 7
for each of the skills 2 and 3.

Figure ?. Version 3, new workers with skills equal to that of their neighbors, but arising in
unequal quantities

 8

?. THE MODEL V.4 (WORKERS ARISING IN RANDOM POSITIONS, IN AN UNBALANCED WAY)

The V.4 of the model is based on V.2, but in each cycle instead of creating 30 units-workers
in random position extracting the agents from the three possible types at chance7, we create in
random position8 16 agents of type 1 and 7 of each of the other types (2 and 3).

The first row of Matrix 0 now is:
Probability for
recipe 1, 2 or 3 of
adding workers
with 1, 2, 3 skills,
in random position

count of the added
workers of the 3
types

Figure ?. Version 4, new workers with skills randomly distributed in the stratum space, but
arising in unequal quantities

7 Using 1201 and 1101 steps.
8 Using c1104 that duplicate in a random position the unit the order is in, in the same stratum.

