
Incomplete and rough draft (09/03/2003), please do not quote. p.1/39

In corso
accountancy with @@@3 (as an appendix)
@@@1 unit criterion
@@@2 accounting

How to use jES program (February 2003, Pietro Terna)

An introduction to an enterprise simulator
(related to jesframe-0.9.7.53.tar.gz, How to v. 0.1.6.4.1; the figures of this How to are also reported in the

companion file How_to_use_jES_(figures).ppt1

THE DESCRIPTION OF A WORLD WITH “TWO SIDES” AND THAT OF SIMULATION ENVIRONMENT
CONSISTENT WITH THAT KIND OF WORLD

We are developing jES (the external name of the project: Java Enterprise Simulator), or
jesframe (the internal name of the project: a frame used to develop enterprise simulation
models based on the Java version of Swarm) both (i) to simulate the actions - with the
consistent emerging results - of an actual enterprise and (ii) to build virtual2 or hypothetical
enterprises. In the first case we can use the simulator to test the behavior of an emulated
enterprise, as is or modified (may be, also operating in never seen situations), with highly
practical goals. In the second case, we are interested in theoretical analysis of enterprise
creation, behavior, network interaction, with speculative purposes.

In any cases, we are building a model: of an actual or of a virtual enterprise, but always a
model. Following Gilbert and Terna (2000), we can state that:

(. . .) there are three main way to build a model: the familiar verbal argumentation and mathematics, but
also a third way, computer simulation. Computer simulation, or computational modeling, involves
representing a model as a computer program. Computer programs can be used to model either
quantitative theories or qualitative ones. They are particularly good at modeling processes and although
non-linear relationships can generate some methodological problems, there is no difficulty in representing
them within a computer program.

The first approach to how to use jES introduces the existence of two independent sides in our
world description and representation and, in a consistent way, in our program or, better, in our
model.

Our simulated enterprise has both orders to accomplish – each described by a “recipe” that
contains the WD (What to Do) side or the world - and production units that perform the
different steps of the production process, which represent the DW (which is Doing What) side
of the same world.

Production units can be within the firm or outside. In the second case: (i) constituting other
complex enterprises or (ii) standing alone as small business actors.

1 We can read it also with OpenOffice, www.openoffice.org.
2 The term virtual is used here to designate an enterprise that does not exists, useful as a stylised item to
elaborate ideas about firm creation, cooperation etc. The term of virtual enterprise is also used to designate
operating as a network of actual firms or of subparts of those firms (see below the reference to ne NIIIP
Consortium) and it is compatible too with the use and purposes of jES, but in the (i) side purpsoses.

Incomplete and rough draft (09/03/2003), please do not quote. p.2/39

It is useful to introduce here a dictionary of our terms:

• a production unit is a productive structure within or outside our enterprise; a production
unit is able to perform one or more of the steps required to accomplish an order;

• an order is the object representing a good to be produced; an order contains technical
information (the recipe describing the production steps) and accounting data;

• a recipe is a sequence of steps to be executed to produce a good.The core of the model is
the clean separation between the order and the production units: WD and DW are completely
independent, in formalism and in code. So, running the model, we check the consistency of
the two sides, as in the actual world, where the output of an enterprise arises from a complex
interaction among products and production tools. As we will see above, recipes can also
describe internal parallel production paths, computational steps, batch activities and assembly
phases, where the typical procurement problems of a supply chain can be tested (with or
without just in time requirements).

A SIMPLIFIED VIEW

A first view is that of Figure 1. This is an introductory view of the world, with the recipes
written in a simplified way; i.e., as a sequence of steps to be executed without information
about the time required by each step. Observing the recipe 8-28-27-7 we can see that the front
end (FE) of an enterprise can take in charge the first step, which will be executed by unit 8 (in
this simplified version, production unit and step numbers are coincident) within the enterprise.

Figure 2 now introduces a more dynamic interpretation of the world we are describing.

Figure 1. A simplified view of the jES components; recipes are here reported in a
simplified way, without time specifications.

We have here three simple phases (a, b, c) in which the order containing the recipe 8-28-27-7
goes from one production unit to another; in this sequence, all the needed information is

Incomplete and rough draft (09/03/2003), please do not quote. p.3/39

contained in the order: when the activity of a production unit (as an example, unit 8) is
concluded, the production unit asks to the order what is the next step to be performed and then
it asks to all the production units that is able to execute that task. In this way, the order makes
its journey from unit 8 to unit 28 (which is outside the enterprise and can be considered as a
simple business unit) and to unit 27 (similar to 28). In the next step, signed with an x in Figure
2, we have a choice problem, having two production unit able to perform task 7. Below we
will introduce a set of production unit criterions properly to deal with this kind of problem in
our simulation.

A remark, a little bit more abstract. One of the two units, that able to perform step 7, belongs
to another enterprise, so we can imagine of having to open a dialog with the front end of the
other enterprise. Anyway we have also to take in consideration the possibility of a direct link
with the production unit within the other enterprise. The idea of linking together the subunits
of more complex enterprises to obtain specific productive results bring directly to the concept
of virtual enterprise as an organizational tool: as an example, look at NIIIP project (National
Industrial Information Infrastructure Protocols), which as a site at http://niiip01b.npo.org4.

3 In the site we can read that: “The NIIIP Consortium consists of a group of leading United States information
technology suppliers, industrial manufacturing end users, academic, and standards organizations with a common
interest in developing an information infrastructure architecture to enable organizations to operate as "Virtual
Enterprises". Virtual Enterprises are teams, consortia or alliances of companies formed to exploit business
opportunities that can not be addressed by a single organization.”
“The NIIIP Consortium is national in scope and its members bring a wealth of experience and technology to
support Virtual Enterprises. Together with the Federal Government, they share costs and skills to create the
necessary infrastructure to support Virtual Enterprises across the United States. The NIIIP Consortium has
entered into a series of cooperative agreements with the Federal Government and associated agencies to develop,
demonstrate, and prototype industrial «Virtual Enterprises».”
4 In the site we can read that: “The NIIIP Consortium consists of a group of leading United States information
technology suppliers, industrial manufacturing end users, academic, and standards organizations with a common
interest in developing an information infrastructure architecture to enable organizations to operate as "Virtual
Enterprises". Virtual Enterprises are teams, consortia or alliances of companies formed to exploit business
opportunities that can not be addressed by a single organization.”
“The NIIIP Consortium is national in scope and its members bring a wealth of experience and technology to
support Virtual Enterprises. Together with the Federal Government, they share costs and skills to create the
necessary infrastructure to support Virtual Enterprises across the United States. The NIIIP Consortium has
entered into a series of cooperative agreements with the Federal Government and associated agencies to develop,
demonstrate, and prototype industrial «Virtual Enterprises».”

Incomplete and rough draft (09/03/2003), please do not quote. p.4/39

Figure 2. A dynamic view of the jES components; recipes are here reported in a simplified
way, without time specifications.

HOW THE MODEL WORKS

From a technical point of view it is important to note that almost all the intelligence of our
simulation process is placed on the order (WD) side. We can imagine the behavior of the code
in the following way (suppose that we are not at the beginning of the simulation, so the
process is already running to elaborate orders):

1. new orders (each containing its recipe) are launched in production (NB, despite this
presentation sequence, this is the second action per each tick of our simulation clock,
immediately followed by that of point 2),

o following a script describing the temporary sequence of the events to be simulated
(see below the use of the orderDistiller object);

o while testing the program, the orders are randomly generated, via orderGenerator
object;

2. each order (both new or old) makes an inquiry into the world to discover if one or more
production units can perform its first undone step;

o each order contains a recipe conceived as sequence of steps to be done,

o with several complex tools useful to better describe the step sequences and the related
consequences;

3. if only one production unit makes a positive reply the order is assigned to the waiting list
of that production unit;

o (if no unit replies, the program is stopped in an error condition, because in this case
we have to correct the description of our world);

4. if more than one unit is able to perform the required step, we have to choose one of them;

Incomplete and rough draft (09/03/2003), please do not quote. p.5/39

o the choice can be made following several unit criterions (see below),

o but in the future this will be a key feature of jES (not yet implemented),

 allowing human interventions to experiment different situations and solutions,

 but also to train people

 and to discover how people decide;

 finally, this is a window open to the introduction of sophisticated optimizations
tools such as genetic algorithms and classifier systems;

5. (if the simulation parameter useNewses allows this function, each production unit
propagates news about order to be expected in the near future by subsequent production
units; this is an attempt to experiment with cooperation and information within an
organization; decisions of production of stand alone inventories, described at point 7, can
be based also on news informing each unit about future productions);

6. orders stay in the waiting list of the chosen unit up to their specific step is done;

o the sequence of the order in the waiting list can be managed to improve the firm
performance (this feature is not yet implemented);

7. production units act operating on the orders, one per tick of the clock; NB each unit acts;
this is the first action per each tick of our simulation clock;

o if an operation requires more than one tick of the clock the order is kept into the unit
until all the time is spent;

o the production can require a setup processes, with related cost and time spent; see
below for this feature, that is not yet implemented;

o the production can be replaced by the use of inventories related to each specific
production step,

 if inventories exist and, must of all, if it is technically possible to store the
activity resulting from the production step;

 in this case, more than one order can be treated in a single tick, if we have
room in inventories;

 inventories are produced and stored when the units are idle (unused), but only
if the simulation parameter useWarehouses allows this function;

 (the stand alone production of inventories is discussed below);

8. an order is dropped, after some accounting, when a step of its recipe is done and its recipe
does not contain other undone steps;

o to drop an order has the meaning of eliminating it from the simulation;

o in other terms, the related good is sold;

 the recipe steps can include trade actions;

o an order can contain a recipe that include at its end a code related to an “end unit” (see
below);

 in this case, the order is related to a component part produced by ourselves or
procured externally;

Incomplete and rough draft (09/03/2003), please do not quote. p.6/39

• after its production (procurement) it is kept in an actual or virtual
warehouse represented by and “end unit”;

 note the difference between this kind of production of component parts and the
stand alone preparation of inventories of activities related to each single step of
a recipe;

9. the sequence continuously goes back to the time phase described in row 1.

Time synchronization is obtained via a usual trick in simulation: at each tick of the simulation
clock all the production units make the actions described in row 7 above; only when all this
actions are concluded, orders make the operations described in row 8 and – after row 1 is
executed – those of row 2.

INTRODURRE QUI SOPRA the key feature constituting the core of jES; these feature are
reproduced also in a light versions (jESlet, jES light experimental tool) of the code, developed
using … (StarLogo, Jas, Ascape) mainly for comparative reasons and to introduce the readers
of a book on agent based simulation in social science to a direct knowledge of several
different instruments.

A CLOSER LOOK TO THE WD SIDE

ORDERS, RECIPES AND LAYERS

Our simulated enterprise has orders to accomplish; the orders are described by the recipes that
contains the WD (What to Do) side or the world.

Figure 3. Basic recipe.

The basic recipe in an order is structured as shown in Figure 3.

Here we have a sequence of steps followed by a time specification and by a time quantity:
step n1 requires m1 units of time (days, hours o seconds, following ts choice). Time quantities
are integer numbers.

Internally, recipes are represented repeating the step for each unit of time it lasts: e.g. 10 s 3 is
10 10 10. Deepening the problem, if we have heterogonous units of time in the same
simulation (hours and seconds, as an example) internally an hour is represented by a sequence
of 3600 steps of one second (See below the discussion about units of time; all this subject is
not yet fully implemented).

Incomplete and rough draft (09/03/2003), please do not quote. p.7/39

Two orders containing the same recipe can be anyway different from some qualitative point
of view. To deal with this product specification, we introduce the concept of layer: a layer is a
period of time or a set of qualitative conditions that introduce differentiations into the orders;
e.g two collections in fashion production, with the same technical description (recipe) and
different qualitative results.

The number of layers that we can use explicitly introduced as one of the parameters of the
simulation (if it is set to 1, we use no layers). The attribution of each order to a layer is made
by the user when she is writing the order sequence of the simulation (see below the use of the
orderDistiller object; while testing the program (using the orderGenerator object) layer
attributions are made randomly.

We can also imagine to define a special step (with its length) in recipes in which
nothing is happening (only the time is elapsing), to be used when a product has to
wait a due time (we are simply making it older for some reason) before to be sold or
used again in production. The unit able of “doing” this step has unlimited capacity of
treating any waiting list dimension, because doing a step means doing nothing.

BATCHES

We have cases in which it is not realistic to think about processes concerning separately
single piece (e.g. productions requiring less than one time unit to make a certain step): this
kind of occurrences given, a realistic view is that of considering the production as batches of
pieces.

We have two kind of batches in our world: sequential batches and stand alone batches.

SEQUENTIAL BATCH PROCESS

A sequential batch process – as reported in Figure 4 – deals simultaneously with a lot of
orders, despite being one of the steps of a recipe. We have to imagine a productive process
that is separately managed for each order, but that for certain steps requires an activity
referred to a group of orders to be processed together: this is a sequential batch, formally
expressed as in Figure 4.

Incomplete and rough draft (09/03/2003), please do not quote. p.8/39

Figure 4. A sequential batch.

in seq. batch ordine uguale se ... (disregard unit number ...)

STAND ALONE BATCH PROCESS

A stand alone batch process, described in Figure 5, is similar to a sequential one (we use here
“/” instead of “\”), but it is not included in a recipe with other steps.

It is the only step of a recipe describing a process considered as a whole: imagine in this case
external procurements that our enterprise is ordering in batches of large dimensions, requiring
a time delay to be accomplished. In the just in time perspective, the determination of the time
point in which to start a stand alone batch order is very important, properly due to the time
delay necessary to produce the whole bunch.

The recipe containing the stand alone batch process must be composed by two parts: the stand
alone batch, obviously, and the identifier of and “end unit” (see below the double
procurement process description and the end unit explanation).

Incomplete and rough draft (09/03/2003), please do not quote. p.9/39

Figure 5. A stand alone batch.

PROCUREMENTS IN THE WD SIDE

Now it is the time of introducing the procurements.

Figure 6. A graphical representation ... ; recipes are here reported in a simplified way,
without time specifications.

Incomplete and rough draft (09/03/2003), please do not quote. p.10/39

Procurement are key elements in running the enterprise simulation. In Figure 6 we represent a
situation in which step 28, to be executed by the unit signed 28 (remember that in the
simplified presentation, recipes are written as a sequence of steps to be executed without
information about the time required and that production unit and step numbers are coincident)
requires to join some components, internally produced or externally procured, to the output
received from production unit 8, as a semifinished product; here we need components
identified by codes 121, 34 and 73.

These component must be prepared by specific recipes, like those of Figure 7. Note that those
recipes are all concluded by a “e” identifier followed by a numeric code. With “e number” we
recall an end unit (see below), i.e. an actual or virtual warehouse where the internally
produces parts are to be searched when a recipe tells to a unit to procure them.

Figure 7. Components (to be procured or internally produced) described in recipes.

In Figure 7 we see procurement order from other supplies, treated as “black boxes”, both with
a single step recipe (that concluded by c1 end unit code) and by two stand alone batch (see
above) recipes (those concluded by c2 and c3 end unit codes); we could decide also the
explode our representation of external activities, using a magnifying lens and describing them
with the same detail used for the internal one. In the same Figure we have also internal
produced parts: to first one (concluded with the c4 end unit code) is described in a detailed
way and contains a sequential batch process (see above); those concluded with the end unit
codes c5 and c6 are similar to those used to describe in a compact way the externally procured
productions.

The difference between procurement or internal produced components is anyway merely an
ex post classification and it is related to our knowledge of the situation: our firm is able to
make activities required by the recipes of the internal produced components and we decide of
making them internally.

Instead of the generic codes c1, c2, … , c6 we can imagine to have here the codes 121, 34 and
73 of Figure 6.

Incomplete and rough draft (09/03/2003), please do not quote. p.11/39

A CLOSER LOOK TO THE DW SIDE

SIMPLE PRODUCTION UNITS

The DW (which is Doing What) side of the same world is related to production units and to
“end units”.

A production unit is the elementary production cell able to accomplish one or more kind of
steps of a recipe; steps in recipes are identified by number, as we have seen; also the
production units report the steps that they are able to accomplish as numbers.

Simple production units, which are able to deal only with one kind of step, are easily
described using the file unitData/unitBasicData.txt that contains the information of Figure 8.

The first line is mandatory, written exactly as is, to force the user to pay attention to the
content of the file. Then we have lines reporting: (i) the numbers5 of the production unit (the
lines can be introduced in any order, i.e., they have not to be sorted by production unit
number); (ii) a flag set to 1 if the production unit can use stand alone warehouse (see below,
the paragraph about Warehouses; this flag does not work in rows containing a complex
production unit); (iii) the specific step that the production unit is able to do (several
production units can be able to perform the same step); (iv) fixed costs for each production
unit of time (seconds, hours, days); (v) variable costs for each time unit (seconds, hours,
days).

The unit of time must be the smallest used in the whole recipe set. If we use the internal
orderGenerator (see below, not yet written) – when we are testing the code – all the recipes
are internally generated using the same time basic interval (seconds, hours, days, …): we have
to use consistently that time interval in the table of the file unitData/unitBasicData.txt to
measure fixed and variable costs. If we use the orderDistiller (see below, not yet written) - to
follow a known order sequence applied to a recipe repertoire – may be we have to deal with
different time interval used in the recipes: orderDistiller has to convert internally all the time
measures to the smallest one: newly, that time measure has to be consistently used in the table
of the file unitData/unitBasicData.txt to measure fixed and variable costs.

5 Normally, production units are sensitive to layers (two orders with the same recipe are different if belonging to
different layers); if the number of the unit is reported as negative in unitData/unitBasicData.txt, that production
unit is considered unsensitive to layers. This is useful to avoid the use of layer differentiation to establish if an
order belongs to a sequential batch (see below).

Incomplete and rough draft (09/03/2003), please do not quote. p.12/39

Figure 8. Simple production units, with: number; the flag about using or not stand alone
warehouses (see below, not yet written); their production phase, fixed and variable costs.

COMPLEX PRODUCTION UNITS

Complex production units are able to deal with different production steps; this kind of
production unit is identified in the file of Figure 8 with a 0 in the production phase column.
We describe them using a spreadsheet file6, whose contents7 easily identified using the first
worksheet (labeled general_scheme) of the spreadsheet itself (file unitData/unit.xls): the
information contained are those of Figure 9.

First of all, the number of phases or production steps the unit is able to perform; then, without
any meaning in the order of the various line, the code of each production phase followed by
the data about fixed costs and variable costs per unit of time (we account those costs if the
production unit is executing the specific phase of activity; hopefully, fixed costs are the same
for all phases; anyway, when the unit start is undefined (no production made) we account the
fixed costs of the first row. Finally, in each row we have a flag: a 1 value states that in case of
absence of activity oir complex production unit will operate a stand alone step of the type
referred by the row (according to InventoryRuleMaster.java rules; see below the
“Warehouses” paragraph for the interpretation of the stand alone inventory production); a 0
value simply state that the row is not considered to make a stand alone inventory production.
Normally only one row is set to 1; if we find more than one row set to 1, the first one is
chosen. If no row contains a flag set to 1, no inventories are produced. Remember that the
useWarehouse flag of the unitData/unitBasicData.txt do not operate for the rows related to
complex production unit (it can be either 0 or 1).

Below the rows containing the fixed and variable costs and the warehouse flag, we are
planning to introduce two matrixes related to the production unit setup (not yet implemented)

6 We can produce the spreadsheet both via proprietary code or employing an Open Source one, such as
OpenOffice (www.openoffice.org).
7 To access spreadsheet data from a Java environment we use the ExcelReader.java class, written by Michele
Sonnessa (sonnessa@di.unito.it) and based upon the Andy Khan's excelread library
(http://www.andykhan.com/excelread/)

Incomplete and rough draft (09/03/2003), please do not quote. p.13/39

reporting setup costs scij and setup time stij that we have to sustain to modify to production in
the unit from state i to state j.

Figure 9. Complex production units: the explanatory table, in the worksheet labeled
general_scheme.

In Figure 10 we have an example of complex production units (that numbered 2 in Figure 8),
with 3 possible production phases: the 201 production step, with its fixed and variable costs
expressed for time unit (in the example, all set to 1) and a flag 0 for inventory production; the
2001 production step, with similar data; the 2 production step, with the 1 flag for inventory
production.

That production unit can so operate those three different production steps.

Figure 10. An example of complex production unit, reported in the worksheet labeled 2.

Incomplete and rough draft (09/03/2003), please do not quote. p.14/39

END UNITS

A recipe can be concluded by an ordinary production step (it may be also a trading activity if
we want to simulate also the commercial phases of an activity) and in this case the order is
dropped out from the simulation, being concluded and, ma be, the relative merchandise sold.
Obviously, some accounting is made to record the effect of the production on the enterprise
benefit.

A recipe can be also concluded by an ‘e’ code followed by a numbed identifying a unit that is
not a production node in the simulated enterprise, but a node representing an actual or a
virtual (existing only in the mind of a decisional actor, as “We have ordered a bundle of
product that will be here just in time to …”) store, where we place, really or metaphorical, the
result of the recipe.

End units are described using the file unitData/endUnitList.txt that contains the information
of Figure 11. The first line is mandatory, written exactly as is, to force the user to pay
attention to the content of the file.

Figure 11. End units list, with positive code (is sensitive to layers) or negative one (if
unsensitive to layers).

The numerical code of the end units is the same of the components that they contains. Codes
have to be different from those assigned to production units.

End units are of two kinds of end units: layer sensitive (about layers, see above), identified by
a positive code; layer unsensitive end units, identified by a negative code. This difference is
relevant in the procurement processes, to determine if a component (procured or produced
internally) is differentiated per layer or not when has to be found in and end unit to use it.

PROCUREMENTS IN THE DW SIDE

From the point of view of the DW side, a procurement process is a situation in which a recipe,
in the form of Figure 12, order to a production unit (that able to perform the step which is
requiring the procurements: n2, in the case of the Figure), to look for end units to find the
required components, both internally produced or procured.

Incomplete and rough draft (09/03/2003), please do not quote. p.15/39

Figure 12. Production units use components (to be procured or internally produced)
described in recipes.

As seen above, end units have the same code of the parts they contain, so we are here looking
for end units c1, c2, …, ck or 121, 34 and 73 of Figures 6 and 13 (if one of them is missing in
the file unitData/endUnitList.txt, the simulation is stopped, with an error message).

Figure 13. Procurements and internal produced components are held in instances of the
EndUnit class.

Incomplete and rough draft (09/03/2003), please do not quote. p.16/39

The end units can be empty, if the orders containing the recipes necessary to produce the
required components have not been launched in the due time; this is a key problem in a
supply chain. The contents of an end unit can be subdivided by layers (see above): so a
specific layers can be empty. If the components part are lacking, the production units which is
looking for them waits, pausing its production. (In the future, we will develop a cueing
managing feature to overcame the head of the cue in a similar case).

In the example of Figure 13 we have: (a) the component part 121, probably produced
internally, since we describe in detail its production: a step of 3 seconds of type 10, followed
by a sequential batch requiring a set of 100 orders to be executed, globally in 300 seconds; (b)
the component part 34, probably produced externally, as we describe it as a black box with a
stand alone batch producing 1000 items in 2000 seconds; (c) the component part 73, may be
internally produced, in which the unique step describer, the 44 lasting 2 hours, calls for parts
31, 32 and 33 as described by the procurement description ‘p 3 31 32 33’.

CHOOSING WHERE TO GO, WHEN MORE THAN ONE UNIT IS ABLE TO DO A STEP

An important feature in DW side of the simulation is related about decisions.

Each order (both new or old) makes an inquiry into the world to discover if one or more
production units can perform its first undone step; if more than one unit is able to perform the
required step, we have to choose one of them; the choice can be made following several unit
criterions.

At present, we have the following criterions:

@@@1

RESOURCES REQUIRED BY ACTIVE PRODUCTION UNITS

To be implemented: production units locking resources for other production units

WAREHOUSES AND STAND ALONE DECISIONS OF INVENTORY PRODUCTION

Warehouses

Decisions newly

Remember the usewarehouse flag in complex unit worksheet …

Remember also to explain the rules contained in InventoryRuleMaster.java … and the
meaning and interpretation of a stand alone inventory production …

Stand alone production of inventories is not based upon recipes (such as those of the parts that
are necessary in the procurement processes)

Incomplete and rough draft (09/03/2003), please do not quote. p.17/39

Figure 14. Warehouses and inventories in stand alone production.

NEWS PROPAGATION, INFORMATION AND COOPERATION

News are

Technically a news is an objects, so are dealing with “newses”.

Decisions newly, in the field of elementary knowledge management …

Figure 15. News and elementary knowledge manament.

Incomplete and rough draft (09/03/2003), please do not quote. p.18/39

appunto per 0.32 con sameStepLifoAssignment and assignEqualStepsToSameUnit: per
aggirare il fatto che un 101 s 5 101 s 5 sarebbe trattato come 101 s 10 alla stessa
unit, se assignEqualStepsToSameUnit è true, una soluzione è 101 s 5 1010 s 0 101
s 5, in cui 1010 è una unit fittizia

EFFECTS OF THE TIME SPENT BY AN ORDER IN A PRODUCTION UNIT

If maxTickInAUnit is set to a positive value orders waiting in a unit for more than
maxTickInAUnit the order is dropped and disappears from the simulation.

NEWLY BACK TO THE WD SIDE

External (more human readable) and intermediate format of recipes (the internal one,
apparently poor in details, can be examined looking at the comments in Order.java file);
anyway we write recipes in external code; the translation mechanism from external to
intermediate code is contained in OrderDistiller class; from intermediate to internal, in Order
class

OR PROCESSES IN WD SIDE

We can insert an ‘or’ choice in a recipe using the format introduced in Figure 16. In the
example reported here, after step 1, we can have the sequence with the two steps n2 n3 or that
with the unique n22, then the execution of the recipe continues with the step n4. The number
of branches into the or sequence has no limits.

What branch to choose into the or? We have to look at the orCriterion variable, which is set
either via the probe of the model or into the jesframe.scm file.

If orCriterion is:
== 0, all branches are executed in sequence (useful mainly for test purposes);
== 1, the first branch is chosen;
== 2, the second branch is chosen;
== 3, the choice of the branch in made randomly (a good simulated solution if we have to
balance the loading of different production subprocesses;
== 4, we choose the branch whose first step has the shortest waiting list;
== 5, we use the result of a computational step to choose the branch (see below, the
paragraphs “Computational capabilities and memory matrixes” and “Computational
capabilities and ‘OR’ sequences”).

Incomplete and rough draft (09/03/2003), please do not quote. p.19/39

Figure 16. An ‘or’ process, with its branches (|| 1 and || 2)

An example of or sequence is the following, containing also a procurement process (see
above; … not yet written) in I one of the or branches:

10 s 3 c 1997 1 2 12 s 0 || 1 11 s 2 p 1 101 10 s 1 9 s 2

|| 2 c 1995 1 0 1 s 0 14 s 3 || 0 6 s 2

where || 1 and || 2 are two nodes opening two branches of the of the 'or' sequence and || 0
concludes them; in the first branch we can identify the simple procurement sequence ‘p 1 101
10 s 1’.

The ‘or’ sequence are managed by the code of jES in a simple way: al the steps of the
discarded branches are immediately signed as executed, then execution proceed in sequence,
avoiding those steps fictitiously executed.

Incomplete and rough draft (09/03/2003), please do not quote. p.20/39

AND PROCESSES IN WD SIDE

Figure 17. An ‘and’ process, with its branches (&& 1 and && 2)

AND is also not yet implemented; that described in Figure 17 is an asynchronous
AND, as both the braches of the AND sequence have to be executed, but
independently as regard to time. We can also imagine a synchronous AND process,
where the to branches have to be executed together.

COMPUTATIONAL CAPABILITIES AND MEMORY MATRIXES

jES has computational capabilities that can be associated to each step of a recipe. To use this
feature of the program it is necessary to understand Java language, as we have to modify8 the
ComputationalAssembler.java file (which inherits its default methods from the class
ComputationalAssemblerBasic). The goal of the computational capabilities is that of dealing
with forecasting, evaluations, auctions to chose procurements, …

Computations use data contained in memory matrixes created following both the
totalMemoryMatrixNumber of the model probe (this parameter, stating how many matrixes
we are creating, can also be set via the jesframe.scm file) and the contents of the file
unitData/memoryMatrixes.txt shown in Figure 18. Memory matrixes use layers in a

8 We have not to modify the basic file (ComputationalAssemblerBasic.java), which is included in the src/ folder.
Instead, we have to copy in the main folder of the program, from src/, the file ComputationalAssembler.java.
The ‘make run’ command uses the classes contained in lib/jesframe.jar (which are those contained in src/), but
the classes in ./ override those in jesframe.jar.
ComputationalAssembler.java contains no method; we simply add methods, following the examples reported
below and using as a guide the full code or the methods reported in ComputationalAssemblerBasic.java. New
methods are automatically used by the che ckingComputationsAndFreeingOrders() method of
ComputationalAssembler class (which inherits it form its parent class): the tick used to convert the numerical
code of the computational steps into a recognized method reference is based upon the java reflection mechanism.
To understand the trick, looks at the following lines in ComputationalAssemblerBasic.java code:
Class c = this.getClass();
Method m = c.getMethod("c"+(-1*t),null);
m.invoke(this, null);

Incomplete and rough draft (09/03/2003), please do not quote. p.21/39

completely automated way; we can prevent them from using layers setting their number as
negative in each specific declaration into the file unitData/memoryMatrixes.txt. In the
example reported here, the second matrix (numbered 1, being 0 the number of the first one) in
insensitive to layers

Figure 18. Memory matrixes declarations.

Examples of recipes containing computational steps as reported in Figure 19; obviously, to
understand the meaning and the behaviour of a computation it is necessary to consider
together both the sequence of the events emerging from the various orders in execution (with
the related operations interesting the memory matrixes) and the content of the Java code of
the computational operator itself.

As seen above (… not yet written), it is important here to consider both the external (human
readable) format of the recipes and the intermediate one, always human readable, but semi-
translated. To see the internal code (apparently poor in details) you can have a look to the
comment lines in Order.java file. Code number of computational steps are accepted in the
range 1001-1999.

The format of a computation is: ‘c code n m1 … mn’ where ‘c’ is mandatory, ‘code’ is the
code of the computation, ‘n’ is the number of matrixes to be used and ‘m1 … mn’ are the
numbers of those matrixes, as reported in the file unitData/memoryMatrixes.txt (Figure 18).

Incomplete and rough draft (09/03/2003), please do not quote. p.22/39

Figure 19. The format of the computational processes.

We introduce some recipes (Figure 19) with computations as a complete example, to explain
the dynamics of the events and the Java code related to them. To prepare other computational
tools, we have to add lines similar to those introduced below (Figure 20 and 21) into the
ComputationalAssembler class (ComputationalAssembler.java, as explained in the note
above).

In Figure 19 we can see how computational codes are represented following their external and
intermediate formats (anyway, remember that we write recipes in external code). Pay
attention: computational codes at the intermediate format representation level are reported as
negative, following the internal convention of jES, where all the codes related to production
steps are positive, while numbers bearing special meanings are negative.

The Java Swarm codes, extracted from ComputationalAssembler.java and reported in Figure
20 and 21, interact with the recipes of Figure 19.

When an order with recipe ‘1 s 1 c 1998 1 0 5 s 2’ is executed, at the end of the two units of
time required by step 5, matrix 0 is interested by a writing operation in position (0,0) in the
proper layer (determined by the level of the order containing the recipe); if the order contains
recipe ‘1 s 1 c 1998 1 0 6 s 2’ the writing operation, at the end of step 6, concerns matrix 1 at
position (0,0) without layer, being that matrix insensitive to layers by construction; if the
order contains recipe ‘1 s 1 c 1998 1 0 7 s 2’, the writing operation, at the end of step 7,
concerns matrix 3 at position (0,0) in the proper layer, as above. In the Java code of Figure 20
we can see those operation made upon mm0 matrix (but we can use any name) related to the
actual matrix via the getMemoryMatrixAddress method; the setValue method set the 1.0
value at (0,0). If the matrix is insensitive to layers, the layer value set in this method is
disregarded. Finally, the computational step is set as ‘done’9.

9 If the Java code related to a computational method does not set ‘done’ boolean variable to ‘true’ the order is not
freed and does not proceed to its successive recipe steps; the computational step will be repeated in any
simulation cycle, until ‘done’ variable becomes ‘true’.

Incomplete and rough draft (09/03/2003), please do not quote. p.23/39

Figure 20. The Java Swarm code … (simplified eliminating a control statement related to
the consistence of the declared number of matrixes with the internal one).

When an order with recipe ‘1 s 1 c 1999 3 0 1 3 2 s 2 3 s 2’ is executed, at the end of the two
units of time required by step 2, matrix 0, 1 and 3 are interested by a check operation to verify
if positions (0,0) are empty at the proper layer; if not empty, the ‘c 1999’ set those positions
(at those layers) empty and finally set as ‘done’10 the computational step. Into the code of this
example, matrixes mm0, mm1 and mm2 are linked to actual matrixes 0, 1, 3 (the internal
name are completely free).

The effect of those four recipes (OrderGenerator, while testing the program, if
totalEndUnitNumber > 0, launches those recipes at random) is the following: the recipe
containing the code ‘c 1999’ cannot proceed in step 2 if does not exist the effects of one of
each of the recipes containing codes ‘c 1998’ (produced when those recipes are executed at
least at step 5 or 6 or 7 deepness). When the recipe containing the code ‘c 1999’ finally
proceeds to its successive step, the effects or the “used” recipes is eliminated and must be
reviewed by other similar orders.

10 See previous note.

Incomplete and rough draft (09/03/2003), please do not quote. p.24/39

Figure 21. The Java Swarm code … (simplified eliminating a control statement related to
the consistence of the declared number of matrixes with the internal one.

Method accepted by MemoryMatix instances are setValue, getValue, setEmpty, getEmpty
(returning true or false).

The syntax is (leave ‘layer’ as is and set the proper value of the variable as shown in the
examples):
• setValue(layer, (int) row, (int) col, (double) value) or

setValue(layer, (int) row, (int) col, (float) value)
• (float) getValue(layer, (int) row, (int) col)
• setEmpty(layer, (int) row, (int) col)
• (boolean) getEmpty(layer, (int) row, (int) col)

where the setEmpty and the getEmpty methods are useful to manage conditional situation;
obviously, to set not empty a position of a matrix, we simply put a value in it; getEmpty
returns ‘true’ if no value is found, other wise it return ‘false’.

To look directly to the content of a matrix we can use the print method, as shown above in
Figure 20; if, in the probe of the observer, the field printMatrixes is set to true, the print
method displays on the current terminal the content of the matrix; the empty position of the
matrix are reported as not available (NA).

Incomplete and rough draft (09/03/2003), please do not quote. p.25/39

COMPUTATIONAL CAPABILITIES AND ‘OR’ SEQUENCES

If orCriterion == 5 (se above “OR processes in WD side”) computational results are also
useful to chose what branch to execute in an or process.

We choose the branch whose number is stored in (x,0) position in the memoryMatrix
designated by orMemoryMatrix in the probe of the model or in the file jesframe.scm; the
matrix may be sensitive or insensitive to layers. Range of the branch number: from 1 to the
number of branches.

x is 0 if the first node in 'or' sequence is numbered 1; is kk if the first node is numbered 10kk
with kk 00 to 99. If orCriterion is not equal to 5, the codes 10kk are used as 1.

A computational sequence can be included in an ‘or’ branch with a great flexibility of
computational processes11.

RUNNING A SIMULATION: USING THE ORDERGENERATOR OR THE ORDERDISTILLER

Explain the toe order mechanisms …

We have to introduce now the two different situations in which we can run a simulation: (i) ;
(ii) [riusare qui con maggiore dettaglio quanto sopra detto con … The unit of time must be the
smallest used in the whole recipe set. If we use the internal orderGenerator – when we are
testing the code or reproducing a situation in which we have no information about the
sequences of the orders and so we have to generate them in a random way – all the recipes are
internally generated using the same time basic interval (seconds, hours, days, …): we have to
use consistently that time interval in the table of the file unitData/unitBasicData.txt to
measure fixed and variable costs. If we use the orderDistiller - to follow a known order
sequence applied to a recipe repertoire – may be we have to deal with different time interval
used in the recipes: orderDistiller has to convert internally all the time measures to the
smallest one: newly, that time measure has to be consistently used in the table of the file
unitData/unitBasicData.txt to measure fixed and variable costs.]

We have to develop an intelligent version of the distiller, able to deal both with time
scale changes and with changes in the unit used to measure quantities in recipes. Recipes - as
reported in the database file recipeData/recipes.xls - contain references to time about the
length of each steps and of each batch process, both sequential or stand alone; if the time unit
changes, because we account it by a hundred of seconds or a thousand of seconds or …, those
length must be rescaled. In the same way, if we change the basic unit used to measure the
quantity of orders (e.g. one stays for one hundred or one thousand), we have to remember that
the recipes contain references to quantities produced in each sequential of stand alone batch;
those quantities have to be rescaled. Beside this, if we change time unit and quantity unit, also
the contents of the file recipeData/orderSequence.xls has to be reinterpreted, about both
the number of orders to be launched and the time steps to be considered to launch those
orders.

At present all changes have to made by hand modifying the contents of the files
recipeData/recipes.xls and recipeData/orderSequence.xls. It will be probably impossible
to fully automate those operations, but some step in this direction is certainly possible.

11 This aspect is strategic for the development of jES with the capabilities of simulating both the financial side of
the enterprise and the enterprise information system.

Incomplete and rough draft (09/03/2003), please do not quote. p.26/39

We have to introduce the possibility of defining idle time cycles, to simulate pauses in the
production process; within idle time cycles all production units or a part of them are stopped.
May be the better solution is to place this kind on information into the file
recipeData/orderSequence.xls.

ACCOUNTING

jES is capable of automated accounting of production units activities and of order
accomplishment. We have so a two sides accounting, with some differences. An order is
charged of variable and fixed costs related to the production units that it has used in the
production process up the present time; idle production unit do not account for variable costs,
but their fixed costs are not charged to any order, so we can have (correct) differences on the
two sides. A unit producing inventories in the stand alone way accounts also variable costs;
when the step an order is accomplished using inventories, the related costs are charged to the
order. Upon inventories we charge a financial cost, measured by an interest rate, introduced as
a parameter of the simulation. The same as to be done for the components in the end units
(not yet implemented).

Fixed costs are accounted also by a units doing nothing, regardless their content; variable
costs are accounted by units when operating, newly regardless their content.

Finished orders are fully accounted on the side of the orders, such as partial accomplished
orders.

The inputs and outputs about costs are the following (as reported into the
costs/readmeCosts file):

INPUT (from CostParameters/)

1) fixedCosts.txt - the fixed cost amount for each time tick in each unit (to be read as
a sequence in the same order of the unit numbers); these costs are independent
from activity (they have to be considered as sunk costs);

2) variableCosts.txt - the variable cost amount for each time tick in each unit (to be
read as a sequence in the same order of the unit numbers); these costs run only in
case of activity.

OUTPUT (to Costs/)

1) totalDailyCosts.txt - the sum of fixed and variable daily costs. It is set to 0 at
beginning of the day;

2) totalCosts.txt - the sum of totalDailyCost. It is set to 0 only at the beginning of the
simulation;

3) finishedOrderCosts.txt - the final cost of the orders made from the beginning of
the simulation

4) dailySemimanufacturedOrderCosts.txt - the costs of the orders in production at a
specific day;

5) totalInventoryFinancialCost.txt - the financial cost of inventories from the
beginning of the simulation.

A few remarks about costs.

Incomplete and rough draft (09/03/2003), please do not quote. p.27/39

I - The costs from the production unit and the order sides

That introduced above is the cost view from the production unit side; jesframe makes
accounting also within each order, but no direct access to those data is at present implemented

When a unit is operating it accounts for fixed and variable costs; if it is idle, it accounts only
for fixed costs.

A unit is operating when:

i) it is making a step of a recipe contained in an order;

ii) it is producing inventories in a stand alone way (see how_to_use_jES.pdf file).

From the production unit side, the inventory costs are accounted as inventories are produced.

From the order side, when an order is passing in a production unit, its cost accounting is the
same both if the step is presently produced and if it is retrieved from the unit warehouse using
previously produced inventories (in the stand alone way), so the costs related to the
inventories production is transferred to order production costs.

II - Internally produced or externally procured components and end units

When a recipe describing a component of an order is concluded, the result is placed in an end
unit.

The related costs are accounted from the unit side and, as previously seen, from the specific
sub-order or component side.

@@@2

WARNING: at present the costs are not transferred into the orders collecting the internally
produced or externally procured components.

Revenues are accounted for finished orders as they would be sold (anyway, we can include
the trade step in our recipes); inventories produced in the stand alone way are evaluated at
their cost (??); unfinished orders, still in production, are accounted ??

The inputs and the outputs about costs are the following (as reported into the !!! file

FILE …

NB - Error of missing evaluation of the translation of the costs in for components stored in
end unit.

For procured parts we can charge the unit (and so the products obtained) both for fixed and
variable costs or better only with variable costs for the global amount: if it is the case of a
pure procurement, if the related production unit does not works, for our enterprise we account
no costs.

we do not make accounting about fixed costs in the first day (time unit: day, shift, ...) 12 unless
we use warehouses with the immediate possibility of producing inventories; otherwise, being
order launched after the production step of each day, in day 0 simply we have nothing in our
world

12 More exactly, it starts with the first tick of the first day or shift or any other denomination of the unit of time
we are considering.

Incomplete and rough draft (09/03/2003), please do not quote. p.28/39

Figure 22. Accounting ….

Accounting and information systems (the last, via computational objects?) …

Environmental accounting …

Recipes without accounting (e.g. a forecasting activity); [if the recipe is externally activated if
has 0 costs and so 0 revenue; if it is internal …] pensare a BasicNet

Mettere in Arial tutti i riferimenti a file, metodi, variabili, oggetti che si trovano nel
testo
NB NB cambiare l’ordine dei parametri nella probe del model mettendo in fondo quelli che
intessano solo le fasi di test NB spiegare l’uso del distiller di B&B&B rispondendo a “ma
come si passano le ricette”

Sviluppare il Distiller; istruzioni per l’uso QUI e in un file a sé, how to use distiller o qualcosa
del genere, con un tar.gz dentro al tar.gz generale

Con il distiller preparare un semplice esempio che poi si complica usando le varie possibilità

Presentare le probe dell’observer e del model e collegare a jesframe.scm

NB How to get jES

Time=s/d/h or multiples of s/h/d: (i) in orderGenerator we use only one time unit, always the
same; in orderDistiller we can set the smallest time-unit in a specific simulation and then
establish the ratio among the three definitions (s/h/d).

Incomplete and rough draft (09/03/2003), please do not quote. p.29/39

Commentare il README, tutti gli scripts (Windows/Linux) e i contenuti delle directory,
ricordare runBig

Esplorare changelog.txt per scoprire cose da commentare nell’How to

Indicare le cose da fare riportate nel TO DO, tra cui la simulazione del sistema informativo
appoggiata alla simulazione dell’impresa.

Nel mio sito, link a jes, dove devo mettere i file tar.gz, l’How to anche a parte, il ppt con le
figure (e indicarlo sulla prima pagina del ppt)

Non dimenticare:

layer usato ma non definito (è così??)

criteri or

rami or con procurement

il meccanismo degli oggetti “appesi” alle ricette

numerare e paragrafi e sostituire tutti i see above e below con indicazione secche di paragrafi.

SIMULATION PARAMETERS

Mettere qui tutti i parametri delle sonde e del file jesframe.scm

HOW TO OBTAIN JES

You can look to the latest version of jES at http://web.econ.unito.it/terna/jes/, looking for
files such as jesframe-x.y.z.tar.gz, where x.y.z is the version number; the distribution
contains also this explanatory file.

JES is distributed under the Open Source Academic Free License (?) see
http://www.opensource.org/licenses/academic.php from http://www.opensource.org/licenses/.

FUTURE IMPROVEMENTS

Improve the explicit presence of decisional agents, using existing RuleMaster as their
reference and introducing RuleMaster, such as UnitCriterionRuleMaster,
NewRecipeRuleMaster, NewSubRecipeRuleMaster, NewenterpriseRuleMaster (vedere punto
su explicit introduction of agents in jES.doc)

Incomplete and rough draft (09/03/2003), please do not quote. p.30/39

In Book Antiqua via via segnare le cose che farò come aggiunte???

AN APPENDIX ABOUT ACCOUNTANCY, WITH A FEW EXAMPLES

• annotare quanto fatto sull’accounting in readmeCosts e quindi riportare in How to; anche
in Revenues/readmeRevenues si deve trattare il problema ??

• In to do: Unit, line 1367, error in evaluating financial costs (the interest rate is applied to a
physical quantity)

• Apply the 3 evaluation criterion of the inventories at a specific date
(inventoryEvaluationCriterion are: 1=variable costs, 2=fixed+variable costs,
3=revenuePerEachRecipeStep) also for the dailySemimanufacturedProductRevenues
evaluation, a present always at revenuePerEachRecipeStep

All the data files which are necessary to run the test introduced below can be found in the
testCases directory and used copying them (also a whole directory, when necessary) into the
main directory of jES. As an example …

(The development subdirectory contains cases used to check the consistence of the code
while developing it).

A few notes about accountancy problem having end units and internal produced or procured
components stored in them.

Some test without end units and some simple recipes, with jesframe.scm reporting:
useOrderDistiller #f, totalUnitNumber 3, totalMemoryMatrixNumber 0,
maxStepNumber 4, maxStepLength 2, useWarehouses #f, useNewses #f.

unitData/unitBasicData.txt contains:
unit_#__useWarehouse____prod.phase_#____fixed_costs_____variable_costs
 1 1 1 10 1
 2 1 2 10 1
 3 1 3 10 1

revenuePerEachRecipeStep = 21 in jesframe.scm (this value13 gives a benefit of 10 with
fixed and variable costs 10+1).

CASE 014

This test is run without the presence of the application OrderDistiller.java class in the main
directory, so the effect of useOrderDistiller #t is only seemingly true and the order are
randomly generated by the internal OrderGenerator.java class.

We press 10 times Next button (at the end the graphs show 9 in the X scale).

13 INTRODURRE UN FATTORE MOLTIPLICATIVO DEI COSTI, PER TENERE CONTO DI COSTI NON
UGUALI PER STEP??
14 Look at the file jesframe.scm.Case0_OrderGenerator and to the content of the directory
unitData.case0_OrderGenerator in testCases directory.

Incomplete and rough draft (09/03/2003), please do not quote. p.31/39

The concluded order log (file log/ concludedOrderLog.txt) is:
Each line contains: final time unit; tick in the final time unit;
 recipe name; order layer; order number;
 starting time unit; tick in the s. time unit
 (number of steps); the recipe steps
 { the units that have been doing the various steps of
the
 order (-1=step not executed, 'or' sequence) }
 [total cost of the order]; multiplicity
2 0 noName 0 2 1 0 (1) 1 { 1 } [11.0] 1
3 0 noName 0 1 0 0 (2) 1 1 { 1 1 } [22.0] 1
4 0 noName 0 3 2 0 (2) 2 2 { 2 2 } [22.0] 1
7 0 noName 0 4 3 0 (4) 3 3 1 1 { 3 3 1 1 } [44.0] 1
7 0 noName 0 7 6 0 (1) 3 { 3 } [11.0] 1
8 0 noName 0 5 4 0 (3) 1 2 3 { 1 2 3 } [33.0] 1
9 0 noName 0 9 8 0 (1) 2 { 2 } [11.0] 1

COSTS

We generate the file Costs/totalInventoryFinancialCosts.txt also when we have no stand
alone inventory production, in that case filled with zeros, to avoid misunderstandings related
to a previously generated file produced by a run of the simulation that was using inventories.
The same choice is made for the file Revenues/dailyStoredComponentValue.txt.
The file Costs/totalDailyCosts.txt reports the sum of fixed and variable daily costs. It is set
to 0 at beginning of the day. In this case it contains15:
 +0.0000000000000000e+00
 +3.1000000000000000e+01
 +3.1000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01
 +3.3000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01

The interpretation of the cost data reported above is the following (rows are numbered from 0
to 9):

• row (or time unit16) 0: at the beginning of the simulation, the production units are
idle, because orders are launched immediately after the execution of the production
step of each time unit; if the units are not producing for their warehouses, storing
inventories, “our simulated word starts with the first day orders17”; so in row 0 we
have to register no costs;

15 The scientific format is used here for the output as we have no ex ante idea about the scale of the results.
Anyway, this is the automatic output produced by EZGraph Swarm object we writing on a file.
16 A time unit here is a day, a shift, … not the base unit of the time as intended introducing recipes (seconds,
minutes, hours, days, …); a day, a shifts etc. can be subdivided in any number of ticks of a programmable clock,
with the parameter ticksInATimeUnit; in this example ticksInATimeUnit = 1.
17 More exactly, it starts with the first tick of the first day or shift or any other denomination of the unit of time
we are considering.

Incomplete and rough draft (09/03/2003), please do not quote. p.32/39

• row 1: an order has been launched at time 0; looking at the log of the finished
orders above we know that it is the second order in the list, reporting 0 as starting
time unit; its recipe18 is “1 1”, employing the same unit (that able to perform the
step 1, i.e. that #1, in this case) twice; within this time unit, the production unit 1
accounts fixed and variable costs, for an amount of 11; the other units are idle and
account only fixed costs, for a global amount of 20;

• row 2: the second order in the log list is always active, but the order launched at
time 1 (reported in the first line of the log list of the finished orders, being this
order concluded before the previous one) overpass it in a FIFO sequence (Fist In
First Out) that ignores the fact that the first order was already in production in the
same unit and that now its production has been suspended; how all this works:
when the first step of the previous order is concluded, the order goes newly to the
same unit, but at the end of the waiting list; to avoid this effect we can use the
sameStepLifoAssignment option, which is reported in the jesframe.scm file or is
accessible from the model probe (see above, not yet written); in that case

• @@@3

REVENUES

The file Revenues/dailyRevenues.txt reports the revenues from finished orders. It is set to
0 at the beginning of each day. In our example its content is:
 +0.0000000000000000e+00
 +0.0000000000000000e+00
 +2.1000000000000000e+01
 +4.2000000000000000e+01
 +4.2000000000000000e+01
 +0.0000000000000000e+00
 +0.0000000000000000e+00
 +1.0500000000000000e+02
 +6.3000000000000000e+01
 +2.1000000000000000e+01

The file Revenues/dailySemimanufacturedOrderRevenues.txt reports the value of
semimanufactured orders at a specific date (evaluated using revenuePerEachRecipeStep;
in this case set to 21). The content of the file is:
 +0.0000000000000000e+00
 +2.1000000000000000e+01
 +2.1000000000000000e+01
 +2.1000000000000000e+01
 +2.1000000000000000e+01
 +6.3000000000000000e+01
 +1.2600000000000000e+02
 +6.3000000000000000e+01
 +4.2000000000000000e+01
 +6.3000000000000000e+01

18 This is the intermediate form (see above/below) of the recipe, with each step repeated several times if its
execution time exceeds one time unit (second, minute, hour, day, …).

Incomplete and rough draft (09/03/2003), please do not quote. p.33/39

BENEFIT

The file Benefit/benefit.txt reports benefit data from the beginning of the simulation; here it
shows the following results:
 +0.0000000000000000e+00
 -1.0000000000000000e+01
 -2.0000000000000000e+01
 -1.0000000000000000e+01
 +0.0000000000000000e+00
 +1.0000000000000000e+01
 +4.0000000000000000e+01
 +5.0000000000000000e+01
 +6.0000000000000000e+01
 +7.0000000000000000e+01

Some test without end units and some simple recipes, with jesframe.scm reporting:
useOrderDistiller #t, totalUnitNumber 3, maxStepNumber 4, maxStepLength 2,
useWarehouses #f, useNewses #f.

A problem: what if those parameters are not consistent with the unit and recipe files when we
are using the OrderDistiller?

Case 119 (reported also into the file jSE Case1 Case2.xls)

unitData/unitBasicData.txt contains the same data as above.

The concluded order log (file log/ concludedOrderLog.txt) is:
Each line contains: final time unit; tick in the final time unit;
 recipe name; order layer; order number;
 starting time unit; tick in the s. time unit
 (number of steps); the recipe steps
 { the units that have been doing the various steps of
the
 order (-1=step not executed, 'or' sequence) }
 [total cost of the order]; multiplicity
1 0 recipeB 0 1 0 0 (1) 1 { 1 } [11.0] 1
4 0 recipeA 0 2 1 0 (3) 1 2 3 { 1 2 3 } [33.0] 1
5 0 recipeA 0 3 1 0 (3) 1 2 3 { 1 2 3 } [33.0] 1
6 0 recipeA 0 4 2 0 (3) 1 2 3 { 1 2 3 } [33.0] 1
7 0 recipeA 0 5 2 0 (3) 1 2 3 { 1 2 3 } [33.0] 1
8 0 recipeA 0 6 3 0 (3) 1 2 3 { 1 2 3 } [33.0] 1
9 0 recipeA 0 7 3 0 (3) 1 2 3 { 1 2 3 } [33.0] 1

This log is consistent with the content of the recipeData/recipes.xls file:

Recipes ;

 recipeA 101 1 s 1 2 s 1 3 s 1 ;

19 Look at the file jesframe.scm.Case1_OrderDistiller and to the content of the directories
unitData.Case1_OrderDistiller and recipeData.Case1_OrderDistiller in testCases directory.

Incomplete and rough draft (09/03/2003), please do not quote. p.34/39

 recipeB 100 1 s 1 ;

The simulation is following the schedules:

recipeData/orderStartingSequence.xls file:

1 100 * 1 ;

recipeData/orderSequence.xls file:

1 101 * 2 ;

COSTS

The file Costs/totalDailyCosts.txt reports the sum of fixed and variable daily costs. It is set
to 0 at beginning of the day. In this case it contains:
 +0.0000000000000000e+00
 +3.1000000000000000e+01
 +3.1000000000000000e+01
 +3.2000000000000000e+01
 +3.3000000000000000e+01
 +3.3000000000000000e+01
 +3.3000000000000000e+01
 +3.3000000000000000e+01
 +3.3000000000000000e+01
 +3.3000000000000000e+01

REVENUES

The file Revenues/dailyRevenues.txt reports the revenues from finished orders. It is set to
0 at the beginning of each day. In our example its content is:
 +0.0000000000000000e+00
 +2.1000000000000000e+01
 +0.0000000000000000e+00
 +0.0000000000000000e+00
 +6.3000000000000000e+01
 +6.3000000000000000e+01
 +6.3000000000000000e+01
 +6.3000000000000000e+01
 +6.3000000000000000e+01
 +6.3000000000000000e+01

The file Revenues/dailySemimanufacturedOrderRevenues.txt reports the value of
semimanufactured orders at a specific date (evaluated using revenuePerEachRecipeStep;
in this case set to 21). The content of the file is:
 +0.0000000000000000e+00
 +0.0000000000000000e+00
 +2.1000000000000000e+01

Incomplete and rough draft (09/03/2003), please do not quote. p.35/39

 +6.3000000000000000e+01
 +6.3000000000000000e+01
 +6.3000000000000000e+01
 +6.3000000000000000e+01
 +6.3000000000000000e+01
 +6.3000000000000000e+01
 +6.3000000000000000e+01

BENEFIT

The file Benefit/benefit.txt reports benefit data from the beginning of the simulation; here it
shows the following results:
 +0.0000000000000000e+00
 -1.0000000000000000e+01
 -2.0000000000000000e+01
 -1.0000000000000000e+01
 +2.0000000000000000e+01
 +5.0000000000000000e+01
 +8.0000000000000000e+01
 +1.1000000000000000e+02
 +1.4000000000000000e+02
 +1.7000000000000000e+02

Case 220 (reported into the file jSE Case1 Case2.xls); in the testCases directory we have
also Case 2b21 data and recipes (this case is not reported here; it used nested procurement, to
check the recursive application of routines when dealing with orders)

Test with one end unit and some simple recipes, with jesframe.scm reporting:
useOrderDistiller #t, totalUnitNumber 3, totalEndUnitNumber 1, maxStepNumber 4,
maxStepLength 2, useWarehouses #f, useNewses #f.

unitData/unitBasicData.txt contains the same data as above.

unitData/endUnitList.txt contains (the initial double line has to be read as a whole line):
end_unit_#;_use_positive_code_for_layer_sensitive_end_unit;_negative_for_un
sensitive;_do_not_duplicate_the_codes,_neither_with_a_different_sign
10

The concluded order log (file log/ concludedOrderLog.txt) is22:
Each line contains: final time unit; tick in the final time unit;
 recipe name; order layer; order number;
 starting time unit; tick in the s. time unit

20 Look at the file jesframe.scm.Case2_OrderDistiller and to the content of the directories
unitData.Case2_OrderDistiller and recipeData.Case2_OrderDistiller in testCases directory.
21 Look at the file jesframe.scm.Case2b_OrderDistiller and to the content of the directories
unitData.Case2b_OrderDistiller and recipeData.Case2b_OrderDistiller in testCases directory.
22 We can tremendously increase the output of our simulated enterprise adding a second unit able to perform the
step 1.

Incomplete and rough draft (09/03/2003), please do not quote. p.36/39

 (number of steps); the recipe steps
 { the units that have been doing the various steps of
the
 order (-1=step not executed, 'or' sequence) }
 [total cost of the order]; multiplicity
4 0 recipeA 0 2 1 0 (3) 1 2 3 { 1 2 3 } [33.0] 1
6 0 recipeA 0 4 2 0 (3) 1 2 3 { 1 2 3 } [33.0] 1
8 0 recipeA 0 6 3 0 (3) 1 2 3 { 1 2 3 } [33.0] 1

This log is consistent with the content of the recipeData/recipes.xls file:

Recipes ;

 recipeA 101 1 s 1 2 s 1 p 1 10 3 s 1 ;

 recipeB 100 1 s 1 e 10 ;

In this recipe list we have both a ‘p’ process and an ‘e’ key introducing the endUnit number
10.

The simulation is following the schedules:

recipeData/orderStartingSequence.xls file:

1 100 * 1 ;

recipeData/orderSequence.xls file:

1 101 * 1 100 * 1 ;

COSTS

The file Costs/totalDailyCosts.txt reports the sum of fixed and variable daily costs. It is set
to 0 at beginning of the day. In this case it contains:
 +0.0000000000000000e+00
 +3.1000000000000000e+01
 +3.1000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01

REVENUES

The file Revenues/dailyRevenues.txt reports the revenues from finished orders. It is set to
0 at the beginning of each day. In our example its content is:
 +0.0000000000000000e+00
 +0.0000000000000000e+00

Incomplete and rough draft (09/03/2003), please do not quote. p.37/39

 +0.0000000000000000e+00
 +0.0000000000000000e+00
 +8.4000000000000000e+01
 +0.0000000000000000e+00
 +8.4000000000000000e+01
 +0.0000000000000000e+00
 +8.4000000000000000e+01
 +0.0000000000000000e+00

The file Revenues/dailySemimanufacturedOrderRevenues.txt reports the value of
semimanufactured orders at a specific date (evaluated using revenuePerEachRecipeStep;
in this case set to 21). The content of the file is:
 +0.0000000000000000e+00
 +2.1000000000000000e+01
 +4.2000000000000000e+01
 +8.4000000000000000e+01
 +4.2000000000000000e+01
 +8.4000000000000000e+01
 +4.2000000000000000e+01
 +8.4000000000000000e+01
 +4.2000000000000000e+01
 +8.4000000000000000e+01

BENEFIT

The file Benefit/benefit.txt reports benefit data from the beginning of the simulation; here it
shows the following results:
 +0.0000000000000000e+00
 -1.0000000000000000e+01
 -2.0000000000000000e+01
 -1.0000000000000000e+01
 +0.0000000000000000e+00
 +1.0000000000000000e+01
 +2.0000000000000000e+01
 +3.0000000000000000e+01
 +4.0000000000000000e+01
 +5.0000000000000000e+01

Deepening Case 2

Incomplete and rough draft (09/03/2003), please do not quote. p.38/39

Figure 23. Deepening Case 2.

Case 2 accounting

Incomplete and rough draft (09/03/2003), please do not quote. p.39/39

Figure 24. Case 2 accounting.

REFERENCES

GILBERT N., TERNA P. (2000), How to build and use agent-based models in social science,
Mind & Society, no. 1, pp.57-72.

