
Draft version 0.2.2 (the English language has to be checked), please do not quote.

jESlet, java Enterprise Simulation light experimental Tool: an Introduction to a
Simplified Version of the Model

Pietro Terna

(August 2003)

Dipartimento di Scienze economiche e finanziarie G.Prato, Università di Torino, Italia
pietro.terna@unito.it

INTRODUCTION

jES (the Java Enterprise Simulator) is a frame useful to develop enterprise simulation
models based on the Java version of Swarm both (i) to simulate the actions - with the
consistent emerging results - of an actual enterprise and (ii) to build virtual or
hypothetical enterprises.

In the first case we can use the simulator to test the behavior of an emulated enterprise,
as is or modified (also simulating never seen situations), with highly practical goals. In
the second case, we are interested in theoretical analysis of enterprise creation, behavior
and network interaction.

With jES we introduce the existence of two independent sides in our world description
and representation and, in a consistent way, in our program (i.e., in our model).

Our simulated enterprise has both orders to accomplish – each described by a “recipe”
that contains the WD (What to Do) side of the world - and production units that perform
the different steps of the production process; the production units represent the DW
(which is Doing What) side of the same world.

A third formalism - the WDW formalism1: When Doing What - is related to the time
sequence of the events (the orders to be executed) that occur in the world that we are
reproducing.

jES has a simplified version named jESlet2 (jES light experimental tool), developed
using JavaSwarm, JAS, Ascape, RePast and, with some differences, StarLogo) both for
comparative reasons and to help scholars of agent based simulation techniques to
introduce themselves to these different instruments, mainly in the social science
perspective.

1 WDW is not used in the simplified version of the simulator.
2 jESlet has been created downsizing jES (jesframe-0.9.7.60) from 36 classes with globally 10.612 lines
of code to 11 classes with globally 1.670 lines of code.
To follow this explanation in a useful way you need to have the code in your hands; you can download
jeslet-0.1.tar.gz (or successive versions) from web.econ.unito.it/terna/jes.

 2

The key feature of jES - as identified with the [KF] in the paragraph How the model
works within the How to use the jES program - are reproduced in jESlet and reported
here.

HOW THE LIGHT MODEL WORKS

From a technical point of view it is important to note that almost all the intelligence of
our simulation process is placed into the order (WD) side. We can describe the behavior
of the code in the following way (suppose that we are not at the beginning of the
simulation, so the process is already running to elaborate orders):

1. production units3 act operating on the orders existing in their waiting lists, if any,
one order per each tick of the simulation clock;

o the orders whose step is done are placed in a “made production” list, to be
successively diffused to other production units;

2. new orders4 (each containing its recipe) are launched in production:

o each order contains a recipe built as sequence of steps to be done,

o new orders enter into the simulation:

� while testing the program or for a theoretical use, randomly generating
the orders, via the orderGenerator object; this is also the way used in
the light version of the program (jESlet);

o the new orders are assigned to the production units in the same way described at
point 3;

3. each order5 kept into the made production lists (point 1 above) of the production
units makes a search - via the unit code using the assigning tool code - into the
world to discover if one or more production units can perform its following
(undone) step;

o assignments:

� if (only) one production unit makes a positive reply the order is assigned
to the waiting list of that production unit;

o orders stay, in a FIFO (First In First Out) way, in the waiting list of the chosen
production unit up to their specific step is done;

o an order is dropped when a step of its recipe is done and its recipe does not
contain other undone steps;

3 ModelActrions2 in ESFrameModelSwarm.java and unitStep1 in Unit.java.
4 modelActrions2generator in ESFrameModelSwarm.java and createRandomOrderWithNSteps
in OrderGenerator.
5 modelActrions2b in ESFrameModelSwarm.java and unitStep2 in Unit.java.

 3

4. the sequence continuously goes back to the phase described at point 1 for the next
click of the clock. (Other steps are devoted to initializing and to accounting
operation, but are not reported here, to simplify this presentation).

Time synchronization and parallelism are obtained via a usual trick in simulation: at
each tick of the simulation clock, all the production units make the actions described at
point 1 above, independently one to each other (the actual time sequence does not
matter); then, always in the same clock tick, the program executes point 2; when all
these actions are concluded, orders make the operations described at point 3, newly
independently and always in the same tick.

THE PROBE PARAMETERS AND THE RECIPE STRUCTURE

When jESlet starts we can see its two probe windows (Figure 1). In the first pane we
have the ESFrameObserverSwarm parameters6:

• displayFrequency, which states the frequency of the display updating while the
simulation is running: 1 for updating the display in each simulation clock tick; 2 for
updating it every two ticks etc.

• verboseChoice, which states the production, if true, of a lot on printed lines related
to the internal activities of the program;

• timeToFinish, if not equal zero, is the time, expressed in number of ticks, at which
the simulation is stopped.

Figure 1. The parameters of the simulation.

The second pane of Figure 1 reports the ESFrameModelSwarm parameters:

• totalUnitNumber is the number of production units populating our simulation; in
the example of Figure 1 we have three units; automatically the units will receive the
identifying number 1, 2 and 3, following the file unitData/unitBasicData.txt of the
distribution jeslet-0.1.tar.gz. The file contains in each line the identifying number
of a unit and the code describing its production capability. In our case the numbers
of the unit and those of the related activities are the same in each case, but this is not

6 When changing parameters remember to press Enter key to effectively modify the value into the system.
Logic values are true and false; the shortened forms f and t do not work here.

 4

a mandatory condition; also the sequence of the number has not to be ordered nor
continuous;

• maxStepNumber is the maximum number of steps contained in a recipe describing
an order;

• maxStepLength is the maximum number of units of time (e.g. seconds) attribute to
the execution of a step.

In our case, valid cases of recipe structures are:

1 s 1 3 s 1 2 s 1 (the first step requires the execution of the activity 1, in our case
made by unit 1, and lasts 1 second; the second step requires the execution of the activity
3, in our case made by unit 3, and lasts 1 second; the third step requires the execution of
the activity 2, in our case made by unit 2, and lasts 1 second;

3 s 1 2 s 1 (the first step requires the execution of the activity 3, in our case made by
unit 3, and lasts 1 second; the second step requires the execution of the activity 2, in our
case made by unit 2, and lasts 1 second.

With maxStepLength = 4, a valid case would be:

3 s 4 2 s 2 (the first step requires the execution of the activity 3, in our case made by
unit 3, and lasts 4 seconds; the second step requires the execution of the activity 2, in
our case made by unit 2, and lasts 2 seconds.

Recipes in orders, in jESlet, are randomly generated following this kind of rules and a
dictionary build using the information contained into the units.

EXPLAINING THE CLASSES AND THE MODEL SCHEDULE

The overview, of jESlet classes and of their methods, is made following a UML7
diagram automatically (Figure 3) generated employing the program8 Poseidon CE
(community edition), version 1.6.1.

In Figure 3 we have the simplified presentation of the classes of jESlet. The starting
point is StartESFrame containing the main method and creating an instance of
ESFrameObserverSwarm. The creation is followed by the execution of the methods
buildObjects, buildActions and activateIn9 of the new instance.

7 Within the OMG web site (Object Management Group, with the goal of “setting vendor-neutral software
standards), at www.omg.org/gettingstarted/what_is_uml.htm, we read that the Unified Modeling
Language “helps you specify, visualize, and document models of software systems, including their
structure and design.”
8 Poseidon for UML (www.gentleware.com) is directly based on ArgoUML, which is an open source
project (www.argouml.org). The Community Edition of Poseidon for UML is the base version and it is
offered for free.
9 buildObjects; into the Observer, is responsible of the creation both of the objects used to monitor the
model outcomes and of the model itself; the same method, into the Model, has the task of generating all
the objects used to run the simulation. buildActions, into the Observer creates the events to be executed
with the simulation clock to supervise the Model; the same method, into the Model, creates the events to

 5

Following the Swarm protocol, a container class, the Observer, is used to create both the
model and the tools necessary to observe its outcomes. Exactly as StartESFrame
creates ESFrameObserverSwarm, this one creates an instance of
ESFrameModelSwarm, running its methods buildObjects, buildActions and
activateIn.

Executing the buildObjects method, ESFrameModelSwarm creates an instance of
OrderGenerator and totalUnitNumber instances of Unit. It also creates an instance of
AssigningTool and an instance of UnitParameter. UnitParameter is used only in the
initial phase of the generation of the instances of Unit, to deal – in the full version of
jES – with the problem of complex production units, able to perform more than one
activity.

The instances of Order are generated by OrderGenerator while the simulation is
running.

SwarmUtils, MyReader and MyExit are static classes used to perform technical tasks.

/* producing */
modelActions2.createActionForEach$message(unitList,
 SwarmUtils.getSelector("Unit","unitStep1"));
/* a new order; this step is placed here, after the production step,
 * to align the diffusion of the order forms (orders under execution
 * - next step - or new ones - this step -) */
modelActions2generator.createActionTo$message(orderGenerator,
 SwarmUtils.getSelector(orderGenerator,
 "createRandomOrderWithNSteps"));
modelActions2b.createActionForEach$message(unitList,
 SwarmUtils.getSelector("Unit","unitStep2"));
// Then we create a schedule that executes the
// modelActions.
modelSchedule = new ScheduleImpl (getZone (), 1);
modelSchedule.at$createAction (0, modelActions2);
modelSchedule.at$createAction (0, modelActions2generator);
modelSchedule.at$createAction (0, modelActions2b);

Figure 2. The modelActions and the schedule in ESFrameModelSwarm.

When the user presses the Next button or Start one in the Swarm control pane, the
simulated time makes a step or starts running. The sequence of events of the paragraph
“How the light model works” is so executed. Now we look contemporary to the points
of that description and to the schedule10 contained in ESFrameModeSwarm, That
schedule is reported here in Figure 2. In Figure 2 we have also the use of selectors: for
readers unfamiliar with JavaSwarm, a selector is a structure useful to transfer a method
name via a list of parameters.

be executed with the simulation clock to activate in the due moment the various simulation steps.
activateIn is a mandatory technical Swarm task both of the Observer and of the Model.
10 The numbers used to identify the modelActions items are the same of the full version, where a
ModelActions1 exists.

 6

a) The point 1 is related to the execution of ModelActions2 in
ESFrameModelSwarm schedule, which activates, at the beginning of each tick of
the simulated clock, the unitStep1 method in all the instances of Unit. The current
step of the recipe of the first order in the waiting list of each Unit is executed.

b) The point 2 is related to the execution of ModelActions2generator in
ESFrameModelSwarm, which activates, as the second event of each tick of the
simulated clock, the createRandomOrderWithNSteps method in
OrderGenerator. OrderGenerator, via the assign method of AssigningTool,
sends the new generated order (one per tick) the instance of Unit able to perform its
first step.

c) The point 3 is related to the execution of ModelActions2b in
ESFrameModelSwarm, which activates, as the third event of each tick of the
simulated clock, unitStep2 method in all the instances of Unit. UnitStep2, via the
assign method of AssigningTool, sends the Order instances contained in the made
production list of each instance of Unit to the instance of Unit able to perform their
next step. Order instances without successive steps to be execute ad dropped out the
simulation.

With the simulation time running, the schedule of ESFrameModelSwarm
continuously repeats the a, b and c tasks.

 7

Fi
gu

re
 3

. A
n

U
M

L
vi

ew
 o

f j
ES

le
t

