
Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.1/43

How to Use the Java Enterprise Simulator (jES) Programϒ

Pietro Terna

(August 2003)

Dipartimento di Scienze economiche e finanziarie G.Prato, Università di Torino, Italia
pietro.terna@unito.it

1. THE DESCRIPTION OF A WORLD WITH “TWO SIDES” AND THAT OF A SIMULATION
ENVIRONMENT CONSISTENT WITH THAT KIND OF WORLD

We are developing jES (the synthetic name of the Java Enterprise Simulator project), or
jesframe (the internal name of the project: a frame used to develop enterprise simulation
models based on the Java version of Swarm) both (i) to simulate the activities - with the
consistent emerging results - of an actual enterprise and (ii) to build virtual2 or hypothetical
enterprises. In the first case we can use the simulator to test the behavior of an emulated
enterprise, both as it is and wisely modified, with highly practical goals. In the second case,
we are interested in theoretical analysis of enterprise creation, behavior, network interaction.

In any cases, we are building a model, of actual or virtual enterprise, but always a model.
Following Gilbert and Terna (2000, p.58), we can say that:

(. . .) there are three different “symbol systems” available to social scientists: the familiar verbal
argumentation and mathematics, but also a third way, computer simulation. Computer simulation, or
computational modeling, involves representing a model as a computer program. Computer programs can
be used to model either quantitative theories or qualitative ones. They are particularly good at modeling
processes and although non-linear relationships can generate some methodological problems, there is no
difficulty in representing them within a computer program.

The first approach to how to use jES introduces the existence of two independent sides in our
description and representation of the enterprise world and, in a consistent way, in our program
or, better, in our model.

Our simulated enterprise has both orders to accomplish – each described by a “recipe” that
contains the WD (What to Do) side or the world - and production units that perform the
different steps of the production process; production units represent the DW (which is Doing
What) side of the same world.

A third formalism is related to the time sequence of the events (the orders to be executed) that
occur in the world we are simulating; this is the WDW formalism: When Doing What (see
below 5.2.).

Production units can be within the firm or outside. In the second case: (i) constituting other
enterprises or (ii) standing alone as small business actors.

ϒ Related to jesframe-0.9.8.0.tar.gz; the figures of this How to are also reported in the companion file
How_to_use_jES_(figures).ppt (you can read it also with OpenOffice, www.openoffice.org).
2 The term virtual is used here to designate an enterprise that does not exists, useful as a stylised item to
elaborate ideas about firm creation, cooperation etc. The term of virtual enterprise is also used to designate
operating as a network of actual firms or of subparts of those firms (see below the reference to ne NIIIP
Consortium) and it is compatible too with the use and purposes of jES, but in the (i) side purposes.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.2/43

1.1. A DICTIONARY

It is useful to introduce here a dictionary of our terms:

• a production unit is a productive structure within or outside our enterprise; a production
unit is able to perform one or more of the steps required to accomplish an order;

• an order is the object representing a good to be produced; an order contains technical
information (the recipe describing the production steps) and accounting data;

• a recipe is a sequence of steps to be executed to produce a good.The core of the model is
the clean separation between the orders and the production units: WD and DW are completely
independent, in formalism and in code. So, running the model, we check the consistency of
the two sides, as in the actual world, where the output of an enterprise arises from a complex
interaction among products and production tools. As we will see below, recipes can also
describe internal parallel production paths, computational steps, batch activities and assembly
phases, where the typical procurement problems of a supply chain can be reproduced and
tested.

1.2. A SIMPLIFIED VIEW

Figure 1. A simplified view of the jES components; recipes are here reported in a
simplified way, without time specifications.

A first view is that of Figure 1. This is an introductory view of the world, with the recipes
written in a simplified way; i.e., as a sequence of steps to be executed without information
about the time required by each step. Observing the recipe 8-28-27-7 we can see that the front
end (FE) of an enterprise can take in charge the first step, which will be executed by unit 8 (in
this simplified version, production unit and step numbers are coincident) within the enterprise.

Figure 2 now introduces a more dynamic interpretation of the world we are describing. We
have here three simple phases (a, b, c) in which the order containing the recipe 8-28-27-7

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.3/43

goes from one production unit to another; in this sequence all the needed information is
contained in the order: when the activity of a production unit (as an example, unit 8) is
concluded, the production unit asks to the order what is the next step to be performed and then
asks to all the production units to reply if they are able to execute that task. In this way, the
order makes its journey from unit 8 to unit 28 (which is outside the enterprise and can be
considered as a simple business unit) and to unit 27 (similar to 28). In the next step, signed
with an x in Figure 2, we have a choice problem, having two production units able to perform
task 7. Below (3.5.) we will introduce a set of production unit criterions properly to deal with
this kind of problem.

A remark, a little bit more abstract. One of the two units, that able to perform step 7, belongs
to another enterprise, so we can imagine of having to open a dialog with the front end of the
second enterprise. Anyway we have also to take in consideration the possibility of a direct
link with the production unit within the other enterprise. The idea of linking together the
subunits of more complex enterprises to create temporary production organizations bring us
directly to the concept of virtual enterprise as an organizational tool: as an important analysis,
look at the NIIIP project3 (National Industrial Information Infrastructure Protocols), at
http://niiip01b.npo.org.

1.3 HOW THE MODEL WORKS

With the [KF] sign we identify below the key features constituting the core of jES; these key
features are reproduced also in the jESlet versions of the program (jESlet, jES light
experimental tool), developed using JavaSwarm, JAS, Ascape, RePast and, in a different way,
in StarLogo) both for comparative reasons and to help scholars of agent based simulation
techniques to introduce themselves to these different instruments, mainly in the social science
perspective (see the jESlet doc for the explanation of the principal classes, also with a light
UML presentation).

From a technical point of view it is important to note that almost all the intelligence of our
simulation process [KF] is placed into the order (WD) side. We can describe the behavior of
the code in the following way (suppose that we are not at the beginning of the simulation, so
the process is already running to elaborate orders):

1. production units4 act operating on the orders existing in their waiting lists, if any, one
order per each tick of the simulation clock [KF];

o if the production unit is idle, having no orders in its waiting list, the unit can produce
inventories, in a stand alone way; the use of the “stand alone” expression has the goal
of differentiating this kind of production of inventories from the explicit launch of
order related to the supplying of parts or components for the production process, in a

3 In the project web site we can read that: “The NIIIP Consortium consists of a group of leading United States
information technology suppliers, industrial manufacturing end users, academic, and standards organizations
with a common interest in developing an information infrastructure architecture to enable organizations to
operate as "Virtual Enterprises". Virtual Enterprises are teams, consortia or alliances of companies formed to
exploit business opportunities that can not be addressed by a single organization.”
“The NIIIP Consortium is national in scope and its members bring a wealth of experience and technology to
support Virtual Enterprises. Together with the Federal Government, they share costs and skills to create the
necessary infrastructure to support Virtual Enterprises across the United States. The NIIIP Consortium has
entered into a series of cooperative agreements with the Federal Government and associated agencies to develop,
demonstrate, and prototype industrial «Virtual Enterprises».”
4 ModelActrions2 in ESFrameModelSwarm.java and unitStep1 in Unit.java.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.4/43

supply chain way; the stand alone inventories exist if it is technically possible – due to
the nature of the activity of a specific production unit - to produce and to store them;
the stand alone inventories anyway are produced only if the simulation parameter5
useWarehouses is set to true;

o the orders whose step is done are placed in a “made production” list, to be
successively diffused to other production units [KF];

o an order recipe can include its end a code related to an endUnit (see below 3.3.);

� in this case, the order regards a component part produced by ourselves or
procured externally (the recipe contained in the order can report internal or
external steps to be accomplished; in the external case, may be without
details);

• after its production (or its procurement), this kind of order is kept in an
actual or virtual warehouse represented by an endUnit;

Figure 2. A dynamic view of the jES components; recipes are here reported in a simplified
way, without time specifications.

� note the difference between this kind of production of components or parts and
the stand alone preparation of inventories of each specific production unit
capability;

o if an operation requires more than one tick of the clock to be concluded, the order is
kept into the production unit until all the time is spent, with a direct and immediate
reassignment of the order to the unit itself;

o the production can require a setup process, with related cost and time spent; see below
3.2. for this feature, that is not yet implemented;

5 Parameters are set either via the probe of the model or into the jesframe.scm file.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.5/43

o the production can be replaced by the use of inventories related to each specific
production step,

� obviously, if that stand alone inventories exist;

� in this case, more than one order can be treated in a single tick, if we have
room in inventories;

2. new orders6 (each one containing its recipe) are launched in production [KF]:

o each order contains a recipe [KF] built as sequence of steps to be done,

o with several complex tools useful to better describe the step sequences and the related
consequences;

o new orders enter into the simulation:

� following a script describing, with the WDW formalism, the temporary
sequence of the events to be simulated (see below, in 5.1., the use of the
orderDistiller object; see also 5.2. for the WDW formalism);

� while testing the program [KF] or for a theoretical use, randomly generating
the orders, via the orderGenerator object; this is also the way used in the
light version of the program (jESlet);

o the new orders are assigned to the production units [KF] in the same way described at
point 3;

3. each order7 kept into the made production lists (point 1 above) of the production units
makes a search [KF] - via the unit code using the assigning tool code - into the world to
discover if one or more production units can perform its following (undone) step;

o assignments:

� if (only) one production unit makes a positive reply the order is assigned to the
waiting list of that production unit [KF];

• if does not exist at least one replying unit, the program is stopped in an
error condition (we have to correct the description of our world);

� if more than one production unit is able to perform the required step, we have
to choose one of the candidate units;

• the choice can be made following several criterions (see below 3.5,
unitCriterion),

• in the future this will be a key feature of jES (not yet
implemented),

o allowing human interventions: to experiment different
situations and solutions,

o but also to train people

o and to discover how people decide;

6 modelActrions2distiller in ESFrameModelSwarm.java and distill in OrderDistiller; or, as an alternative,
modelActrions2generator in ESFrameModelSwarm.java and createRandomOrderWithNSteps in
OrderGenerator.
7 modelActrions2b in ESFrameModelSwarm.java and unitStep2 in Unit.java.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.6/43

o finally, this is a window open toward the introduction of
sophisticated optimization tools such as genetic
algorithms and classifier systems;

o orders stay, in a FIFO (First In First Out) way, in the waiting list of the chosen
production unit up to their specific step is done [KF];

� the sequence of the order in the waiting list can be managed to improve the
firm performance (this feature is not yet implemented);

� order can be assigned in a LIFO (Last In First Out) way in a specific technical
circumstance (see below 3.9.1., sameStepLifoAssignment), besides the case
of operations (steps) requiring more than one tick of the clock to be concluded
(introduced above, point 1);

o an order is dropped, after some accounting, when a step of its recipe is done and its
recipe does not contain other undone steps [KF];

� to drop an order has the meaning of eliminating it from the simulation;

� in other terms, the related item is sold (the recipe steps can include trade
actions);

4. if the simulation parameter useNewses is set to true, each production unit8 propagates
news about order to be expected in the near future by the other production units; this is an
attempt to simulate cooperation and information within an organization; the decisions
about the production of the stand alone inventories, described at point 1, can be based also
on news informing each unit about its future production;

5. the sequence continuously goes back to the phase described at point 1 for the next tick of
the clock. (Other steps are devoted to initializing and to accounting operation, but are not
reported here, to simplify this presentation).

Time synchronization and parallelism are obtained via a usual trick in simulation: at each tick
of the simulation clock, all the production units make the actions described at point 1 above,
independently one to each other (the actual time sequence does not matter); then, always in
the same clock tick, the program executes point 2; when all these actions are concluded,
orders make the operations described at point 3, newly independently and always in the same
tick; finally, production units execute point 4, always independently and in the same tick.

2. A CLOSER LOOK TO THE WD SIDE

2.1. ORDERS, RECIPES AND LAYERS

Our simulated enterprise has orders to accomplish; the orders are described by the recipes that
contain the WD (What to Do) side or the world. The basic recipe in an order is structured as
shown in Figure 3.

Here we have a sequence of steps followed by a time specification and by a time quantity:
step n1 requires m1 units of time (days, hours o seconds, following ts choice). Time quantities
are integer numbers.

8 modelActrions2b in ESFrameModelSwarm.java and unitStep3 in Unit.java.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.7/43

Internally, recipes are represented repeating the step for each unit of time it lasts: e.g. 10 s 3 is
10 10 10. Deepening the problem, if we have heterogeneous units of time in the same
simulation (hours and seconds, as an example) internally an hour is represented by a sequence
of 3600 steps of one second (See below 5.1 for the discussion about units of time; all this
matter is not yet fully implemented).

Figure 3. Basic recipe.

Two orders containing the same recipe can be anyway different from some qualitative point
of view. To deal with this product specification, we introduce the concept of a layer: it is a
period of time or a set of qualitative conditions that introduce differentiations amid the orders;
(e.g., two collections in fashion production, with the same technical description into the
recipes and different qualitative results).

The number of layers that we can use is explicitly introduced via the totalLayerNumber
parameter of the simulation: we use totalLayerNumber - 1 layers; if the limit is set to 1, we
use no layers. The attribution of each order to a layer is made by the user when she is writing
the order sequence of the simulation (see below 5.1. about the use of the orderDistiller object;
while testing the program (using the orderGenerator object) the layer attributions are made
randomly.

We can also imagine the definition a special step (with its length) in recipes in which
nothing is happening (only the time is elapsing), to be used when a product has to
wait a due time (we are simply making it older for some reason) before to be sold or
used again in production. The unit able of “doing” this step has unlimited capacity of
dealing with any waiting list dimension, because doing a step means doing nothing.

2.2. BATCHES

We have cases in which it is not realistic to think about processes concerning separately a
single piece: a realistic view is that of considering the production as batches of pieces.

We have two kinds of batches in our simulated world: sequential batches and stand alone
batches.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.8/43

2.2.1. SEQUENTIAL BATCH PROCESS

A sequential batch process – as reported in Figure 4 – deals simultaneously with a lot of
orders, despite being one of the steps of a recipe. We have to imagine a productive process
that is separately managed for each order, but that for certain steps requires an activity
referred to a group of orders to be processed together: this is a sequential batch, formally
expressed as in Figure 4.

Figure 4. A sequential batch.

Comparing orders to prepare a batch we have to decide if considering equals to orders with
equal steps also if the production units that have made the concluded steps are not the same. Il
the compareDisregardingUnits parameter is set to true, orders are used to compose a batch
also in the case that they have not been produced exactly by the same units; the opposite if the
parameter is set to false.

How the sequential batch works: SequentialBatchAssembler identifies equal orders
necessary to compose a sequential batch, signs them as properly belonging to a sequential
batch and finally places them together at the beginning of the proper Unit waitingList. The
production of the batch will require the global time of the sequence (m3 in Figure 4) and all
the produced in the batch will be available simultaneously.

2.2.2. STAND ALONE BATCH PROCESS

A stand alone batch process, described in Figure 5, is similar to the sequential one (formally
we use here “/” instead of “\”), but it is not included in a recipe with other steps.

It is the only step of a recipe describing a process considered as a whole: imagine an external
procurement that our enterprise is ordering in batches of large dimensions, requiring a time to
be accomplished. In the just in time perspective, the determination of the time point in which

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.9/43

to start a stand alone batch order is very important, considering the delay necessary to produce
the whole bunch.

The recipe containing the stand alone batch process must be composed by two parts: the stand
alone batch, obviously, and the identifier of an endUnit (see below 3.4. and 3.8. for the
double procurement process description and 3.3. for the end units explanation).

Figure 5. A stand alone batch.

2.3. PROCUREMENTS IN THE WD SIDE

Procurements are key elements in running an enterprise simulation. In Figure 6 we represent a
situation in which step 28, to be executed by the unit signed 28 (in this simplified
presentation, recipes are written as a sequence of steps to be executed without information
upon the time required and production unit ID numbers and step numbers are coincident)
requires to add some components, internally produced or externally procured, to the output
received from production unit 8, as a semifinished product; here we need components
identified by codes 121, 34 and 73.

Specific recipes, like those of Figure 7, must prepare these components. Note that an e
identifier followed by a numeric code concludes all those recipes. With the sequence “e
number” we recall an endUnit (see below 3.3.; i.e., an actual or virtual warehouse where the
internally produced parts are to be searched when a recipe asks to a unit to procure them.

In Figure 7 we see procurements, coming from external suppliers, treated as “black boxes”,
both with a single step recipe (that concluded by c1 endUnit code) or by stand alone batches
(see above 2.2.2.) recipes (those concluded by c2 and c3 endUnit codes); we could decide
also the explode our representation of external activities, using a magnifying lens and
describing them with the same detail used for the internal one. In the same Figure we have
also internal produced parts: to first one (concluded with the c4 endUnit code) is described in
a detailed way and contains a sequential batch process (see above 2.2.1.); those concluded

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.10/43

with the endUnit codes c5 and c6 are similar to those used to describe without details the
externally procured productions.

Figure 6. A graphical representation ... ; recipes are here reported in a simplified way,
without time specifications.

The format of the recipes using procured components is introduced below in 3.4., when
examining procurements from the DW side.

Figure 7. Components (to be procured or internally produced) described in recipes.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.11/43

Instead of the generic codes c1, c2, … , c6 we can imagine to have here the codes 121, 34 and
73 of Figure 6.

The difference between procurement and internal produced components is anyway merely an
ex post classification and it is related to our knowledge and decisions about actual
organization of an enterprise: e.g., our firm is able to make activities required by the recipes
of the externally produced components and we decide of making them internally.

3. A CLOSER LOOK TO THE DW SIDE

3.1. SIMPLE PRODUCTION UNITS

The DW (which is Doing What) side of the same world is related to the production units and
to the “end units”.

A production unit is the elementary production group able to accomplish one or more kind of
step of a recipe; steps in recipes are identified by numbers, as we have seen; also the
production units report the steps that they are able to accomplish communicating a number.

Figure 8. Simple production units, with: number; the flag about using or not stand alone
warehouses (see below 3.8.); their production phase, fixed and variable costs.

Simple production units, which are able to deal only with one kind of step, are easily
described using the unitData/unitBasicData.txt file, which contains the information of
Figure 8.

The first line is mandatory, written exactly as is, to force the user to pay attention to the
content of the file. Then we have lines reporting: (i) the numbers9 of the production unit (the

9 Normally, production units are sensitive to layers (two orders with the same recipe are different if belonging to
different layers); if the number of the unit is reported as negative in unitData/unitBasicData.txt, that production
unit is considered unsensitive to layers. This is useful to avoid the use of layer differentiation to establish if an
order belongs to a sequential batch (see below 2.2.1.).

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.12/43

lines can be introduced in any order, i.e., they have not to be sorted by production unit
number); (ii) a flag set to 1 if the production unit can produce and use the stand alone
inventories (see below 3.8. Warehouses; this flag does not work in rows containing a
complex production unit); (iii) the specific step that the production unit is able to do (several
production units can be able to perform the same step); (iv) fixed costs for each production
unit of time10 (seconds, hours, days); (v) variable costs for each time unit (seconds, hours,
days).

The unit of time must be the smallest used in the whole recipe set. If we use the internal
orderGenerator (see below, not yet written) – when we are testing the code – all the recipes
are internally generated using the same time basic interval (that we can assume to be a second,
an hour, a day, …): we have to use consistently that time interval in the table of the file
unitData/unitBasicData.txt to measure fixed and variable costs. If we use the orderDistiller
(see below 5.1.) - to follow a known order sequence applied to a recipe repertoire – may be
we have to deal with different time interval used in the recipes: orderDistiller has to convert
internally all the time measures to the smallest one (not yet implemented): newly, that time
measure has to be consistently used in the table of the file unitData/unitBasicData.txt to
measure fixed and variable costs.

3.2. COMPLEX PRODUCTION UNITS

Figure 9. Complex production units: the explanatory table, in the worksheet labeled
general_scheme.

Complex production units are able to deal with a number of production steps; this kind of
production unit is identified in the file of Figure 8 with a 0 in the production phase column.
We describe them using a spreadsheet file11, whose contents are easily identified using the

10 In the recipes we will have to use the time in a consistent way to the kind of time unit to which the costs are
referred (see below 5.1.).
11 We can produce the spreadsheet either using a proprietary code or employing an Open Source one, such as
OpenOffice (www.openoffice.org).

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.13/43

first worksheet (labeled general_scheme) of the spreadsheet itself (file unitData/unit.xls):
the information contained12 is that of Figure 9.

In this sheet we have: (i) the number of phases (kind of production step) the unit is able to
perform; (ii) the code of each production phase followed by the data about fixed costs and
variable costs per unit of time, without any meaning in the order of the various line; we use
those costs in accounting when the production unit is executing the specific phase of activity;
hopefully, fixed costs are the same for all phases; anyway, when the unit activity is undefined
(it made no production) we account the fixed costs of the first row; (iii) finally, we have a flag
in each row with 1 value saying that in case of absence of activity the complex production
unit will operate a stand alone inventory production step of the type referred by the row
(according to InventoryRuleMaster.java rules; see below 3.8. for the interpretation of the
stand alone inventory production); 0 says that the row is not considered to make a stand alone
inventory production; usually only one row is set to 1; if we find more than one row set to 1,
the first one is automatically chosen; if no row contains a flag set to 1, no inventories will be
produced. The useWarehouse flag of the file unitData/unitBasicData.txt does not operate
in the rows describing complex production units (it can be either 0 or 1).

Figure 10. An example of complex production unit, reported in the worksheet labeled 2.

After the rows containing the fixed and variable costs and the warehouse flag, we are
planning to introduce two matrixes related to the production unit setup (not yet
implemented) reporting setup costs scij and setup time stij that we have to sustain to
change to production from state i to state j.

A chain of worksheets labeled with the productions unit numbers follows the introductory
worksheet. In Figure 10 we have an example of complex production units (that numbered 2 in
Figure 8), with 3 possible production phases: the 201 production step, with its fixed and
variable costs expressed for one time unit (in the example, all set to 1) and a flag 0 for the
inventory production; the 2001 production step, with similar data; the 2 production step, with

12 To access spreadsheet data from a Java environment we use the ExcelReader.java class, written by Michele
Sonnessa (sonnessa@di.unito.it) and based upon the Andy Khan's excelread library
(http://www.andykhan.com/excelread/)

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.14/43

the flag 1 for the inventory production. That production unit can so operate those three
different production steps.

3.3. END UNITS

A recipe can be concluded by an ordinary production step (it may be also a trading activity if
we want to simulate also the commercial side of the production chain): in this case the order
is dropped out from the simulation, being concluded. Obviously, some accounting is made to
record the effect of the production on the enterprise benefit.

A recipe can be also concluded by an e code followed by a number identifying a unit that is
not a production node in the simulated enterprise, but a node representing an actual or a
virtual (when we are procuring something that is not material, such as services) stockpile,
where we place, really or metaphorical, the result of the recipe.

Figure 11. End units list, with positive code (is sensitive to layers) or negative one (if
unsensitive to layers).

End units are described using the file unitData/endUnitList.txt that contains the information
of Figure 11. The first line is mandatory, written exactly as is, to force the user to pay
attention to the content of the file.

The numerical code of the end units is the same of the components that they contain. Codes
have to be different from those assigned to the production units.

End units are of two kinds: layer sensitive ones (about layers, see above 2.1.), identified by a
positive code; layer unsensitive end units, identified by a negative code. This difference is
relevant in the procurement processes, to determine if a component (procured or produced
internally) has to be differentiated per layer when we are looking for it in an endUnit.

3.4. PROCUREMENTS IN THE DW SIDE (AND ZERO TIME STEPS)

From the point of view of the DW side, a procurement process is a situation in which a recipe,
in the form of Figure 12, orders to a production unit (that able to perform the step that is

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.15/43

requiring the procurements: n2, in our case), to look for end units to find the required
components, both internally produced or procured.

Figure 12. Production units use components (to be procured or internally produced)
described in recipes.

Figure 13. Procurements and internal produced components are held in instances of the
EndUnit class.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.16/43

As seen above, end units have the same code of the parts they contain, so we are here looking
for end units c1, c2, …, ck or 121, 34 and 73 of Figures 12 and 13 (if one of them is missing
in the file unitData/endUnitList.txt, the simulation is stopped, with an error message).

The end units can be empty, if the orders containing the recipes necessary to produce the
required components have not been launched in the due time; this is a key problem in a
supply chain and it is useful to simulate this kind of emergence.

The contents of an end unit can be subdivided by layers (see above 2.1.): so a specific layer
can be empty.

If some component parts are lacking, the production unit that is looking for them waits,
pausing its production. (In the future, we will develop a queueing managing feature to
overcome the head of the queue in a similar case).

In the example of Figure 13 we have: (a) the component part 121, probably produced
internally, since we describe in detail its production: a step of 3 seconds of type 10, followed
by a sequential batch requiring a set of 100 orders to be executed, globally in 300 seconds; (b)
the component part 34, probably produced externally, as we describe it as a black box with a
stand alone batch producing 1000 items in 2000 seconds; (c) the component part 73, may be
internally produced, in which the unique step describer, the 44 lasting 2 hours, calls for parts
31, 32 and 33 as described by the procurement description ‘p 3 31 32 33’.

A procurement sequence cannot be applied to a sequential batch step13: in this case we have to
introduce a zero time step in the form 1111 s 0, which are immediately executed in a clock
tick regardless how many they are (1111 here is a fictitious production unit). So the correct
recipe is p 2 21 32 1111 s 0 5 s 1000 \ 500 and not p 2 21 32 1111 s 1000 \ 500.

3.5. CHOOSING WHAT TO DO, WHEN MORE THAN ONE UNIT IS ABLE TO DO A STEP

An important feature in DW side of the simulation is related about decisions.

As seen above in 1.3., each order (both new or old) makes an inquiry into the world to
discover if one or more production units can perform its first undone step; if more than one
unit is able to perform the required step, we have to choose one of them; the choice amid the
valid units can be made following several criterions.

At present, we have the following possibilities, which are related to the value of the parameter
unitCriterion:

• 1 - the first of the valid unit as listed in the unitData/unitBasicData.txt file;

• 2 - one of the valid units is chosen in a random way, which is a realistic approximation of
many actual situations;

• 3 - the valid unit with the shortest waiting list (in case of a few candidates with the same
value of the shortest waiting list, criterion 1 is used among them).

We repeat that in the future this will be a key feature of jES (not yet implemented),
allowing human interventions: to experiment different situations and solutions, but
also to train people and to discover how people decide; finally, this is a window open

13 This is due to internal code reasons.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.17/43

toward the introduction of sophisticated optimization tools such as genetic
algorithms (GA) and classifier systems (CS).

Regarding human interventions, we can easily include real economic subjects into the
simulation framework, introducing artificial agents acting as avatars14 of actual agents.
Artificial agents asking to their represented personality (e.g. via a web page) what to do (in
this case, what unit we chose to assign the production) while the simulation is running.

Regarding the use of soft computing techniques such as GA and CS, the project is that of
using the simulator (jES) to evaluate the fitness of population of solutions (GA) or of
populations of rules (CS).

3.6. RESOURCES REQUIRED BY ACTIVE PRODUCTION UNITS AND STOPPED UNITS

In the future we have to implement the possibility of production units locking, when
activated, other production units, to simulate situations in which we have a resource
that can alternatively be applied to several units, but simultaneously only to a subset
of them.

We will also introduce the possibility of stopping production units15 (a few of them
or all), e.g., to reduce activity in a production shift or to put out of use a production
unit, e.g., to emulate a breakdown).

3.7. NEWS PROPAGATION, INFORMATION AND COOPERATION

With the term news we designate information about an incoming order that a production unit
send to the other unit listed in the recipe after the sending unit (Figure 14).

Technically “a news” is an object, so we are dealing with “newses”. Units send information
one to another if they are linked in the matrix contained in the
unitData/informationFlowMatrix.txt, where is reported, without spaces in rows, a matrix
with rows and columns related to the unit numbers. To use news propagation, at present the
number of the units must be consecutive and sorted in ascending order in
unitData/unitBasicData.txt.
A 1 in a cell means that the unit on the row can send messages to the unit on the columns;
with a 0 the message cannot be sent. Production units never send news to themselves, so the
values on the diagonal can be either 0 or 1.

The whole information process is active if the parameter useNewses is set to true; the
number of steps ahead in the recipe to take in account to find the production units to which a
unit has to send information is defined by the infDeepness parameter.

The use of the informationFlowMatrix is managed by an instance of the class
InformationRuleMaster.

14 From www.babylon.com: s. avatar (Hindu mythology) earthly incarnation of a god, human embodiment of a
deity; (Internet) online image that represents a user in chat rooms or in a virtual “space”.
15 May be the better solution is to place this kind on information into the file recipeData/orderSequence.xls;
see below 5.2.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.18/43

Figure 14. News and elementary knowledge management.

3.8. WAREHOUSES AND STAND ALONE DECISIONS OF INVENTORY PRODUCTION

Figure 15. Warehouses and the stand alone production of inventories. The squares are the
units and the circles are the warehouses (note that not all the units have a warehouse)

We have newly here a decision problem: if the useWarehouse parameter is set to true and
the flags, related to simple or complex units specific use of the inventory production, allow
this kind of activity (see above 3.1. and 3.2.), our production units can accumulate inventories

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.19/43

(Figure 15) in their warehouses, limitedly to their specific production ability (for the case of
multiple abilities, see 3.2. above).

Each unit in idle status, before producing for its warehouse, asks to its instance of
InventoryRuleMaster16 if it has effectively to produce. The rule master gives its agreement
to the inventory production if the warehouse level would be less than the maxInWarehouses
parameter value.

If the use of newses (see above 3.7.) is active in the simulation, the agreement to the
production of inventories requires that (i) the warehouse level is less than
maxInWarehouses and it exists a number of newses greater than the
nOfNewsesToProduce parameter, signaling incoming orders; or (ii) lacking this second
condition, the warehouse level would be less than minInWarehouses parameter value.

Stand alone production of inventories is not based on recipes (such as those of the parts
required in the procurement processes) but is simply the application of the unit capability, if it
has sense to work alone to accumulate inventories. If inventory exists, as explained in 1.3., the
production can be replaced by using inventories related to each specific production step; here,
more than one order can be treated in a single tick by a specific production unit, if it has room
in inventories.

3.9.DETAILS IN DW SIDE

3.9.1. TECHNICAL DETAILS ABOUT ASSIGNMENT PROCESS

The assignment process, seen in 1.3. above, requires the explanation of some technical details,
related to the case of presence of a repeated step in a recipe. Consider the recipe 101 s 5 101
s 4 with the production units 11 and 12 both able to execute the step 101. In a simulation run
we could discover a sequence of use of the unit 12 and then of the unit 11, with an unrealistic
effect. Setting assignEqualStepsToSameUnit to true, the assignment of the second 101
step uses the same unit of the first one. A linked problem is related to the way we reassign the
order to the first used unit: maybe we want that its execution would be continued without
interruption, so we ha to put the reassigned order at the first place of the waiting list, in a
LIFO way. This effect is obtained setting to true the sameStepLifoAssignment parameter.

So the first parameter sets the condition that manages the assignment of an order with the
same step to the same unit the order come from (a realistic condition); the second one sets the
way in which an order is re-assigned to a production unit if we are making the same kind of
step (LIFO or FIFO).

A minor problem is related to cases in which we do not want, for some technical reason, that a
recipe 101 s 5 101 s 4 would be treated exactly as a recipe 101 s 9 when the twos are set to
true. Here a trick is that of writing the recipe as 101 s 5 1010 s 0 101 s 4, where 1010 is a
fictitious production unit and the 0 identify a zero time production step (see above, 3.4.).

16 We have a few RuleMaster classes in jES, telling the their agents what to do; this scheme is related to the idea
of the ERA (Environment, Rules, Agents) framework, introduced at web.econ.unito.it/terna/ct-era/ct-era.html.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.20/43

3.9.2. EFFECTS OF THE TIME SPENT BY AN ORDER IN A PRODUCTION UNIT

If maxTickInAUnit is set to a positive value, orders waiting in a production unit for more
than maxTickInAUnit are dropped and disappear from the simulation.

4. NEWLY BACK TO THE WD SIDE

4.1. A TRIPLE FORMAT FOR THE RECIPES

The way the recipes of the orders are written is triple: external, intermediate and internal. The
user always writes its recipes in the external format, creating a recipe repertoire into the file
recipeData/recipes.xls placed in the folder where jES is running. For example, look at
appCases\VIR\Caso-1_base in the distribution of the program.

The external (human readable) and the intermediate formats of the recipes are easily
understood on the base of the comments contained in the OrderGenerator.java file. The
internal one, apparently poor in details, can be examined looking at the comments and at the
instructions contained in Order.java file. Anyway we write the recipes using the external
code; the translation mechanism from the external to the intermediate code is contained in
OrderDistiller class; from the intermediate to the internal, in Order class.

A technical detail: in the internal format, the particulars of the recipes are reported in
accompanying objects; the order contains a recipe and several lists of those objects.

4.2. OR PROCESSES

Figure 16. An or process, with its branches (|| 1 and || 2)

We can insert an or choice in a recipe using the format introduced in Figure 16. In the
example reported here, after step 1, we can have the sequence with the two steps n2 n3 or that
with the unique n22; then the execution of the recipe continues with the step n4. The number
of branches into the or sequence has no limits.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.21/43

What branch chooses the sequence within the or? We have to look at the orCriterion
parameter. If it is:

• 0, all branches are executed in sequence (useful only for test purposes);

• 1, the first branch is chosen;

• 2, the second branch is chosen;

• 3, the choice of the branch in made randomly (a good simulated solution if we have to
balance the loading of several production processes);

• 4, the branch whose first step has the shortest waiting list;

• 5, the result of a computational step to choosing a branch (see below 4.4. about
computational capabilities and memory matrixes; 4.5. about computational capabilities
and or sequences).

An example of or sequence is the following, containing also a procurement process (see
above 2.3. and 3.4.) in one of the or branches:

10 s 3 c 1997 1 2 12 s 0 || 1 11 s 2 p 1 101 10 s 1 9 s 2
|| 2 c 1995 1 0 1 s 0 14 s 3 || 0 6 s 2
Where || 1 and || 2 are two nodes each opening a branch of the or sequence and || 0 ends the
sequence; in the first branch we can identify the simple procurement sequence ‘p 1 101 10 s
1’.

Figure 17. An and process, with its branches (&& 1 and && 2)

The or sequences are managed by the code of jES in a simple way: al the steps of the
discarded branches are immediately signed as executed, then execution proceeds in sequence,
avoiding those steps fictitiously executed.

Besides a procurement process, an or sequence can contain also a computational step (see
below 4.4).

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.22/43

4.3. AND PROCESSES AND PARALLEL PATHS

and processes are not yet implemented; the and described in Figure 17 is
asynchronous, as both the branches of the and sequence have to be executed, but
independently as regard to time. We can also imagine also an and process as
synchronous, whit all the branches to be executed together.

4.4. COMPUTATIONAL CAPABILITIES AND MEMORY MATRIXES

jES has computational capabilities that can be associated to each step of a recipe. To use this
feature of the program it is necessary to understand the Java language, as we have to modify17
the ComputationalAssembler.java file (which inherits its default methods from the class
ComputationalAssemblerBasic). Computational capabilities have the goal of dealing with
forecasting, evaluations, auctions to choose procurements, …

Figure 18. Memory matrixes declarations: the ID number are ordered and starting from
zero.

Computations use data contained in memory matrixes created following both the
totalMemoryMatrixNumber parameter and the contents of the file
unitData/memoryMatrixes.txt shown, as an example, in Figure 18. Memory matrixes use
layers (see above 2.1.) in a completely automated way; we can prevent them from using
layers setting their ID number as negative in each specific declaration into the file

17 We have not to modify the basic file (ComputationalAssemblerBasic.java), which is included in the src/
folder. Instead, we have to copy in the main folder of the program, from src/, the file
ComputationalAssembler.java.
The ‘make run’ command uses the classes contained in lib/jesframe.jar (which are those contained in src/), but
the classes in /. override those in jesframe.jar.
ComputationalAssembler.java contains no method; we simply add methods, following the examples reported
below and using as a guide the full code or the methods reported in ComputationalAssemblerBasic.java. New
methods are automatically used by the checkingComputationsAndFreeingOrders() method of
ComputationalAssembler class (which inherits it from its parent class): the trick used to convert the numerical
code of the computational steps into a recognized method reference is based on the Java reflection mechanism.
To understand the trick, looks at the following lines in ComputationalAssemblerBasic.java code:
Class c = this.getClass();
Method m = c.getMethod("c"+(-1*t),null);
m.invoke(this, null);

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.23/43

unitData/memoryMatrixes.txt. In the example reported here, the second matrix (numbered
1, being 0 the number of the first one) in insensitive to layers

Examples of recipes containing computational steps as reported in Figure 19; obviously, to
understand the meaning and the behavior of a computation it is necessary to consider together
both the sequence of the events emerging from the various orders in execution (with the
related operations interesting the memory matrixes) and the content of the Java code of the
computational operator itself.

It is important here to consider both the external (human readable) format of the recipes and
the intermediate one, always human readable, but semi-translated (see above 4.1.). Code
numbers of the computational steps are established in the range 1001-1999.

The format of a computation is: ‘c code n m1 … mn’ where c is mandatory, code is the code
of the computation, n is the number of matrixes to be used and ‘m1 … mn’ are the numbers of
those matrixes, as reported in the file unitData/memoryMatrixes.txt (Figure 18).

Figure 19. The format of the computational processes.

We introduce some recipes (Figure 19) with computations as a complete example, to explain
the dynamics of the events and the Java code related to them. To prepare other computational
tools, we have to add lines similar to those introduced below (Figure 20 and 21) into the
ComputationalAssembler class (ComputationalAssembler.java, as explained in the note
above).

In Figure 19 we can see how computational codes are represented following their external and
intermediate formats (anyway, remember that we write recipes in external code). Pay
attention: computational codes at the intermediate format representation level are reported as
negative, following the internal convention of jES, where all the codes related to production
steps are positive, while numbers bearing special meanings are negative.

The Java codes, extracted from ComputationalAssembler.java and reported in Figure 20
and 21, interact with the recipes of Figure 19.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.24/43

When an order with recipe ‘1 s 1 c 1998 1 0 5 s 2’ is executed, at the end of the two units
of time required by step 5, matrix 0 is interested by a writing operation in position (0,0) in the
proper layer (determined by the level of the order containing the recipe); if the order contains
the recipe ‘1 s 1 c 1998 1 0 6 s 2’ the writing operation, at the end of step 6, concerns
matrix 1 at position (0,0) without layer, being that matrix insensitive to layers by construction;
if the order contains the recipe ‘1 s 1 c 1998 1 0 7 s 2’, the writing operation, at the end of
step 7, concerns matrix 3 at position (0,0) in the proper layer, as above. In the Java code of
Figure 20 we can see these operations made on mm0 matrix (but we can use any name) to be
related to the actual matrix via the getMemoryMatrixAddress method; the setValue method
set the 1.0 value at position (0,0). If the matrix is insensitive to layers, the layer value set in
this method is disregarded. Finally, the computational step is set as done18.

Figure 20. The Java code (simplified eliminating a control statement related to the
consistence of the declared number of matrixes with the internal ones).

When an order with the recipe ‘1 s 1 c 1999 3 0 1 3 2 s 2 3 s 2’ is executed, at the end of
the two units of time required by step 2, matrix 0, 1 and 3 are interested by a check operation
to verify if positions (0,0) are empty at the proper layer; if they are not empty, the ‘c 1999’
computation set those positions (at the proper layers) empty and finally set as done19 the
computational step. Into the code of this example, the matrixes mm0, mm1 and mm2 are
linked to actual matrixes 0, 1 and 3 (the internal names are completely free).

The effect of those four recipes (the OrderGenerator, while testing the program, if
totalEndUnitNumber is greater than 0, launches those recipes at random) is the following:
the recipe containing the code ‘c 1999’ cannot proceed in their step 2 if does not exist the

18 If the Java code related to a computational method does not set the done variable to true the order is not freed
and does not proceed to its successive recipe step; the computational step will be repeated in any simulation
cycle, until the done variable becomes true.
19 See previous note.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.25/43

effects of one of each of the recipes containing codes ‘c 1998’ (effects produced when those
recipes are executed at least at step 5 or 6 or 7). When the recipe containing the code ‘c 1999’
finally proceeds to its successive step, the effects of the “used” recipes are eliminated and
must be renewed by other similar orders.

Methods accepted by the MemoryMatrix instances are setValue, getValue, setEmpty,
getEmpty (returning true or false).

Figure 21. The Java code (simplified eliminating a control statement related to the
consistence of the declared number of matrixes with the internal ones.

The syntax is (leave layer as is and set the proper value of the variable as shown in the
examples):
• setValue(layer, (int) row, (int) col, (double) value) or setValue(layer, (int) row, (int)

col, (float) value)
• (float) getValue(layer, (int) row, (int) col)
• setEmpty(layer, (int) row, (int) col)
• (boolean) getEmpty(layer, (int) row, (int) col)
Where the setEmpty and the getEmpty methods are useful to manage conditional situations;
to set “not empty” a position of a matrix, we simply put a value in it; getEmpty returns true if
no value is found, otherwise it returns false.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.26/43

To look directly to the content of a matrix we can use the print method, as shown above in
Figure 20; if, in the probe of the observer, the field printMatrixes is set to true, the print
method displays on the current terminal the content of the matrix; the empty positions of the
matrix are reported as not available (NA).

4.5. COMPUTATIONAL CAPABILITIES AND or SEQUENCES

If orCriterion is equal to 5 (see above 4.2.) computational results are also useful to choose
what branch to execute in an or process.

We choose the branch whose number is stored in (x,0) position in the memoryMatrix
designated by the orMemoryMatrix parameter; the matrix may be sensitive or insensitive to
layers. Range of the branch number: from 1 to the number of branches.

x is 0 if the first node in or sequence is numbered 1; is kk if the first node is numbered 10kk
with kk 00 to 99. If orCriterion is not equal to 5, the codes 10kk are used as 1.

A computational sequence can be included in an or branch adding great flexibility to the
computational processes20.

5. RUNNING A SIMULATION

5.1. USING THE orderGenerator OR THE orderDistiller

The simulation mechanism is activated by the orders containing the recipes. The recipes
report the steps to be done and the time necessary to accomplish each step.

To run a simulation, we have to define the time parameters: ticksInATimeUnit says how
many ticks, of the simulation clock, are necessary to complete a unit of time21 (a day, a shift,
…; note that with this value we set the time granularity, i.e., its details, from 1, which is the
minimum granularity, to any value); timeToFinish is the number of ticks (ticks in a time unit
multiplied by time unit) to which the program stops the simulation (if zero, never). Also the
graphics, in the x scale, adopt this kind of value.

The orders are, alternatively: (i) randomly generated by the orderGenerator instance of the
OrderGenerator class, when we are testing the code or reproducing a situation in which we
have no information about the sequences of the orders and so we have to generate them in a
random way; (ii) distilled from a repertoire of recipes, following a time schedule, by the
orderDistiller instance of the OrderDistiller class; this is the common case of application of
jES to actual situations.

In the first case, using orderGenerator, all the recipes are internally generated using the
same time basic interval (that we can take to mean as seconds, hours, days, …); we have to
use consistently that time interval to measure fixed and variable costs both in the table of the

20 This aspect is strategic for the development of jES with the capabilities needed in simulating both the financial
side of the enterprise and the enterprise information system.
21 This definition is relevant for accounting purposes; from the production point of view the results are exactly
the same if we describe ten time units each of one tick or a time unit with ten ticks and then place the same order
launches in each of the ten elementary ticks.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.27/43

file unitData/unitBasicData.txt (simple units, 3.1. above) and in the spreadsheet reporting
the data of the complex units (3.2.) unitData/unit.xls.

In the second case, using orderDistiller, we introduce the When Doing What (WDW)
formalism (see 5.2. below). Recipes can contain the time expressed in seconds or in minutes
(orderDistiller automatically converts minutes in seconds; in the future also hours and
days will be introduced). Internally, in a specific simulation we use only one time unit,
always the same; in orderDistiller we can set the smallest time-unit in a specific
simulation and then establish the ratios with the other measures used into the
recipes.

Also in the second case, with orderDistiller, the time measure (the smallest one; seconds, at
present) has to be consistently used to measure fixed and variable costs, for simple units (3.1.
above) in the table of the file unitData/unitBasicData.txt and, for complex units (3.2. above)
into the various sheets of the file unitData/units.xls.

We have to develop an intelligent version of the distiller, able to deal both with time
scale changes and with changes in the time-unit used to measure quantities in recipes. Recipes
contain references to time to measure the length of each step and of each batch process, either
sequential or stand alone; if the time unit changes, to speed up the simulation (with less
granularity in time description) we have to convert hundreds of seconds or thousands of
seconds into a single time unit, modifying automatically the interpretation of the recipes, also
in batch productions. In the same way, if we change the basic unit used to measure the
quantity of orders (e.g. one stays for one hundred or one thousand), we have to remember that
the recipes contain references to quantities produced in each sequential of stand alone batch:
those quantities have to be adjusted in size. Besides this, if we change the time unit or the
quantity unit, also the contents of the schedule of the events have to be reinterpreted, about
both the number of orders to be launched and the time steps to be considered to launch those
orders. Finally, all the fixed and variable costs have to be adjusted in size, according them to
the modified time-unit.

At present all changes have to be made by hand modifying the contents of the files described
into the next paragraph. It will be probably impossible to automate fully those operations, but
some step in this direction is possible.

5.2. WHEN DOING WHAT (WDW)

The WDW formalism is a set of conventions useful to create a repertoire of recipes and to
schedule them over the time.

The repertoire is contained in the file recipeData/recipes.xls; the recipes are reported in the
first worksheet of the spreadsheet22; the name of the worksheet (the default one or that chosen
by the user) will be reported in the error messages, if any.

We have examples of this file both in the appCases/ folder (see the various subfolders) and
in the testCases/ folder (see the subfolders with a folder recipeData/).
The format is rows and columns free, only the order (from left to right and from top to
bottom) has meaning; empty cells are allowed. Anyway: rows containing comments have to

22 We can produce the spreadsheet either using a proprietary code or employing an Open Source one, such as
OpenOffice (www.openoffice.org).

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.28/43

start in column 1 with a # sign alone in the first cell (and have no ending sign); each recipe
starts with a name - better if space free - and an ID number (used by ourselves and by the
program for error messages), then we have the body of the recipe as seen above and below in
the various Figures and examples and finally we have a mandatory ; sign ending the recipe.
All the elements of a recipe, such as name, ID number, numbers of the steps, time codes, time
lengths, special codes \, /, c, p, e, ||, &&, ;, etc. are written one per cell. We can use colors and
to break long lines to improve readability. We can also use note and comments written with
the spreadsheet internal rules: the class reading the spreadsheet content does not see these
elements.

The schedule of the order launches in contained in the first worksheet of the file
recipeData/orderSequence.xls; we have examples of this file as above.

The format is free as above, with an item per cell, and the comment lines have the same
limitation expressed for the file containing the recipes. In the same way, we can use colors,
break lines and use note and comments written with the internal rules of the spreadsheet.

Each block of the file (ended by a ; sign) describes the events occurring in a tick of the
simulation clock; each block is related to a tick, in order, starting with the first and regardless
the number used to identify the block. A block starts with an ID number (may be, ordered
starting from zero or one, but this aspect is not mandatory) and contains the recipe of the
orders to be launched in that tick; each recipe code is followed by an * sign and by a repetition
factor (one if we launch one order; n if we launch n orders); being the first item after the ID or
between the launches of the recipes, it may also contain a layer code (see 2.1.), as an l letter
followed by the layer number. In the example 4 is the block number, 33 and 34 are recipes, 2
and 3 are layers (extra spaces are introduced to improve readability; each item of the block in
inserted in a cell, also leaving empty cells within the sequence):

4 l 2 33 * 1 l 3 33 * 3 l 2 34 * 1 ;
We will obtain, in this tick, one order with recipe 33 belonging to layer 2; three orders with
recipe 33 belonging to layer 3; one order with recipe 34 belonging to layer 2. Once a layer is
set, the choice is valid, also in the successive blocks, until a new choice is made. Layer 0 is
the default one.

The layer numbers, as said in 2.1. above, must be less than the value of the
totalLayerNumber parameter.

The contents of the recipeData/orderSequence.xls file are executed one per tick23; if in a
tick nothing has to occur, we have to prepare an empty block with the ID number and the
ending ; sign.

Once we are at the end of the recipeData/orderSequence.xls file, the execution restarts
with the first block etc.

The file recipeData/orderStartingSequence.xls contains exactly the same information of
the recipeData/orderSequence.xls file, but it is used only when the simulation starts and
only once. The use is that of establishing a special starting sequence of orders, e.g., to assure
immediately the presence of procurements, eventually launching orders containing special
recipes used only in the opening phase of the simulation.

23 We repeat that from the production point of view the results are exactly the same if we describe ten time units
each of one tick or a time unit with ten ticks and then place the same order launches in each of the ten elementary
ticks.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.29/43

Both recipeData/orderStartingSequence.xls and recipeData/orderSequence.xls must
exist: if one of them is actually unnecessary, place in it a unique empty block, such as 0 ; (the
ID can be any number).

5.3. TECHNICAL DETAILS IN RUNNING THE SIMULATIONS

If you open the terminal (a Cygwin or Unix terminal) and go to the folder where you have
jES, typing make run a default random simulation starts. make run is the basic command,
sufficient if you use jES as is. If you have to modify jES look at the README.TXT file24. An
alternative to the basic command is make runBig used to improve the quantity of memory
assigned to the simulation for huge problems.

To use one example of the folders appCases/ and testCases/ delete, from the main folder
of jES, the folders unitData/ and recipeData/ (if it exists) and the file jesframe.scm; then
copy and paste from the folder of the chosen example to the main folder of jES25.

6. ACCOUNTING26

jES is capable of automated accounting of the production unit activities and of the order
accomplishment. We have double accounting: (i) an order is charged of variable and fixed
costs related to the production units that it has used in the production process (up the present
time); (ii) idle production units do not account for variable costs and their fixed costs are not
charged to any order. A unit producing inventories in the stand alone way (see above 3.8.)
accounts fixed and variable costs, included in the inventory evaluation; when the step of an
order is accomplished using inventories, the related costs are charged to the order. Inventories
cause a financial cost, measured by an interest rate; this cost is base on the
inventoryFinancialRate parameter, expressed as annual unitary rate27. The same has to be
done for the components kept into the end units (not yet implemented).

Finished orders are fully accounted on the side of the revenues, such as partial accomplished
orders.

6.1. COSTS

About costs, remember that fixed and variable costs are stated per each unit (and in case of a
complex unit, per each activity) as explained in 3.1. and 3.2. above. Costs are related to a time
unit, as expressed also in 5.1.

In the Costs/ folder we have the output files about costs that, as reported into the
Costs/readmeCosts file, are:

24 Besides the README.TXT file, in the folder of jES we have also several script files for Windows or Linux
(using a Bash shell): look always to the README.TXT file for explanations.
25 In testCases/development/using_OrderGenerator_basic_run/ we have the starting configuration.
26 Look at 10. below, for a few examples about accountancy.
27 The annual rate is applied on a daily basis dividing it by 200 (number of days of work per year, in an
approximate way); a day is a time unit composed of ticksInATimeUnit ticks (see above 5.1.; if we are using
another time unit (e.g., a shift) we have to set properly the rate used or to modify the Unit.java code at the line:
eSFrameModelSwarm.getInventoryFinancialRate()/(float) 200;

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.30/43

1) totalDailyCosts.txt: the sum of fixed and variable daily costs. It is set to 0 at beginning of
each day, i.e., block of ticks (ticksInAUnit, see above 5.1.) that we interpret as a time unit
(a day, a shift, …);

2) totalCosts.txt: the cumulated sum of totalDailyCost.txt data. It is set to 0 at the
beginning of the simulation;

3) finishedOrderCosts.txt: the final cost of the concluded orders from the beginning of the
simulation; NB, it does not include: fixed costs registered in idle units; fixed and variable
costs related to the inventory production; semi-manufactured products; financial costs;

4) dailySemimanufacturedOrderCosts.txt: the costs of the orders in production at the end
of a specific day or time unit;

5) totalInventoryFinancialCost.txt: the financial cost of inventories from the beginning of
the simulation.

The value to which we apply the interest rate follows the inventoryEvaluationCriterion, with
the possibilities:
1 = variable costs,
2 = fixed+variable costs,
3 = value v, see 6.2. below.

NB, the criterion 3, in the financial cost determination is internally substituted by the criterion
2, because it would be a non-sense to apply financial costs to virtual revenues.

6.1.1. A FEW REMARKS ABOUT COSTS

That introduced above is the cost view from the production unit side; jES makes accounting
also within each order, considering procured items; these costs are reported in the file
log/concludedOrderLog.txt.
When a unit is operating, it accounts for fixed and variable costs; if it is idle, it accounts only
for fixed costs. A unit is operating when: (i) it is making a step of a recipe contained in an
order; (ii) it is producing inventories in a stand alone way (see 3.8. above).

From the production unit side, the inventory costs are accounted as inventories are produced.
From the order side, when an order is passing in a production unit, its cost accounting is the
same both if the step is presently produced and if it is retrieved from the unit warehouse using
previously produced inventories (in the stand alone way), so the costs related to the inventory
production is transferred to order production costs.

When a recipe, describing an internally produced or externally procured component of an
order, is concluded, the result is placed in an end unit. The related costs are accounted from
the unit side and, as previously seen, they will be included in the final evaluation of the order
that used the stored procurements.

If noAccountingInFirstTimeUnit parameter is set to false we do not make cost accounting
only for the first tick of the first time unit; if it is set to true, we do not make accounting for
the whole first time unit. We do not make accounting about fixed costs in the first tick of the
first day (time unit: day, shift, ...) or in the whole first time unit (if we have prepared an empty
orderStartingSequence.xls file describing a consistent situation) because in this cases we
suppose that, unless we use warehouses with the immediate possibility of producing
inventories; simply we have nothing in our world.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.31/43

6.2. REVENUES

In the Revenues/ folder we have the output files about costs that, as reported into the
Revenues/readmeRevenues file, are:

Revenues are accounted for finished orders as they would be sold; anyway, we can include
the trade step in our recipes.

1) dailyRevenues.txt: the revenues from finished orders (evaluated using value v). It is set
to 0 at the beginning of each day (or time unit);

2) totalRevenues.txt: the total of dailyRevenues from the beginning of the simulation;

3) dailyStoredComponentValue: the value of the inventories at a specific time, following
inventoryEvaluationCriterion with the possibilities:

1 = variable costs,
2 = fixed+variable costs,
3 = value v.

4) dailySemimanufacturedProductRevenues.txt: the value of semi-manufactured orders
at a specific time (evaluated using value v).

v is obtained as:

v = [# of ticks (also of the procured items, if it is a finished order)] *
 revenuePerEachRecipeStep +
 [costs (also of the procured items, if it is a finished order)] *
 revenuePerCostUnit

If revenuePerEachRecipeStep=0 we use the second criterion and vice versa;
revenuePerCostUnit, if used, is normally set to (1 + markup per unit).

A trick about procured parts externally made: we can charge the production units (and so the
products obtained) both for fixed and variable costs or, better, including fixed costs into
variable ones: if it is the case of pure procurements, we have no reason to account fixed costs
when the external production units are idle.

6.3. BENEFIT

The enterprise benefit is reported in the Benefit/benefit.txt file. As explained in the
Benefit/readmeBenefit file, the benefit from the beginning of the simulation is obtained as
the result of the following operation:

totalRevenues (obtained from units, from the beginning of the run)
+ dailyStoredComponentValue (obtained from units, as current value
 of their warehouses)
+ totalSemimanufacturedRevenues (obtained from orders in execution)
- totalCosts (obtained from units)
- totalInventoryFinancialCosts (obtained from units, referring to their
 warehouses from the beginning of the run)

Note that the costs come from production units and include the fixed costs also for the idle
units; revenues come from the orders.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.32/43

6.4. IMPROVEMENTS OF THE ACCOUNTING SYSTEM

The accounting system, synthetically described in Figure 22, will be enhanced considering
both the possibility of environmental accounting and the introduction of the
capability of emulating enterprise information systems, may be via computational
objects (see above 4.4.).

Figure 22. jES accounting system.

jES produces also a log/concludedOrderLog.txt file, with the detailed report of concluded
order; this file can be used as an input for other statistical analysis. Its format can be modified
in the Unit class.

7. SIMULATION PARAMETERS, HISTOGRAMS AND GRAPHS

When we start jES (see above 5.3.) we obtain two parameter panes28. In the first pane we have
the ESFrameObserverSwarm parameters:

• displayFrequency, which states the frequency of the display updating while the
simulation is running: 1 for updating the display in each simulation clock tick; 2 for
updating it every two ticks etc.

• verboseChoice, which states the production, if true, of a lot on printed lines related to
the internal activities of the program;

• printMatrixes, see above 4.4.;

• checkMemorySize, activating messages about used memory (in case of huge problems);

28 When changing a parameter, remember to press the Enter key to effectively modify the value into the system.
Logic values are true and false; the shortened forms f and t do not work here. In the jesframe.scm file explained
at the end of the paragraph, we have to use #t and #f for true and false.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.33/43

• unitHistogramXPos and unitHistogramYPos are the coordinates of the left upper
corner of the window containing the histogram of the production units; the coordinates are
related to the screen and expressed in pixels (in 0,0 we have the left upper point of the
screen);

• endUnitHistogramXPos and endUnitHistogramYPos are the coordinates of the
window of the end unit histogram, as before;

• timeToFinish, see above 5.1.

The second pane reports the ESFrameModelSwarm parameters29:

• ticksInATimeUnit, see above 5.1.;

• totalUnitNumber is the number of simple or complex production units populating our
simulation (see above 3.1. and 3.2.);

• totalEndUnitNumber is the number of endUnits used (see 3.3.); when using the
orderGenerator (see above 5.1.) a totalEndUnitNumber value greater than 1 determines
the production of complex units with procurements, batches and computational steps;

• totalLayerNumber, see above 2.1.; when using the orderGenerator (see above 5.1.) a
totalLayerNumber value greater than 1 determines the production of layered orders;

• totalMemoryMatrixNumber, see above 4.4.;

• sameStepLifoAssignment, see above 3.9.1.;

• assignEqualStepsToSameUnit, see above 3.9.1.;

• compareDisregardingUnits, see above 2.2.1.;

• maxTickInAUnit, see above 3.9.2.;

• useWarehouses, see above 3.8.;

• useNewses, see above 3.7.;

• maxInWarehouses and minInWarehouses, see above 3.8.;

• infDeepness, see above 3.7.;

• inventoryFinancialRate, see above 6.;

• inventoryEvaluationCriterion, 6.1. and 6.2.;

• revenuePerEachRecipeStep and revenuePerCostUnit, see above 6.2;

• nOfNewsesToProduce, see above 3.8.;

• nOfNewsesToBeCleared is the number of newses to be cleared after the decision of
producing to increase inventories (a simple solution is to have it equal to
nOfNewsesToProduce);

• nOfOrdersInNewses is the number of orders in a production unit waiting list for which
newses are propagated; about newses propagation, see above 3.7.;

• orCriterion, see above 4.2. and 4.5.;

29 In old jesframe.scm files we can find the distillerMultiplicity parameter, no longer used. The correspondent
variable exists internally to assure backward compatibility with those files.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.34/43

• orMemoryMatrix, see above 4.5.;

• unitCriterion, see above 3.5.;

• noAccountingInFirstTimeUnit, see above 6.1.1.;

• useOrderDistiller determines the internal generation of orders via orderGenerator (see
above 5.1.) when set to false; if it is true, the order schedule follows the description of 5.2.
above, with the WDW formalism;

• maxStepNumber is the maximum number of steps contained in a recipe describing an
internally generated order, when using the orderGenerator;

• maxStepLength is the maximum number of units of time (e.g. seconds) attribute to the
execution of a step in an internally generated order, when using the orderGenerator.

All the parameters above can be set either in the compiled code or in the pane described in
this paragraph or modifying the jesframe.scm file, which is written following the Scheme
formalism (Scheme is a dialect of the Lisp language; we can use it simply imitating the
existing examples of the jesframe.scm file, both in the main jES folder and in appCases/ or
testCases/ folders).

7.1. HISTOGRAM LEGENDS AND GRAPHS CONTENTS

The histogram “Procument int. or ext.” reports the quantities of procured items
(“q. in endU.”) in each end unit. The histogram “Order in Units” reports the number of
orders waiting for production in each unit (“Queues in u.”), the quantities in the stand alone
warehouses of each unit (“Quant. in w.”) and the number of orders waiting for procured parts
(and so kept into the procumentAssembler object, giving the reason for the legend
“Q. in proc.ass.”).

The other graphs report the Enterprise benefit since the beginning of the simulation; the
min, max and average Waiting list in all the production units; the min, max and average
Quantities in the warehouses (if any) in all the production units; the Ratio total time /
total lengths expressing the ratio between the actual production time of the done orders and
the expected time as expressed in each recipe.

8. HOW TO OBTAIN JES

You can look for the latest version of jES at http://web.econ.unito.it/terna/jes/, looking for
files such as jesframe-x.y.z.tar.gz, where x.y.z is the version number; the distribution
contains also this explanatory file (how_to_use_jES.pdf) and a PowerPoint file
(how_to_use_jES_(figures).ppt) reporting all the Figures used in this presentation. The file
contains also jESlet, the “java Enterprise Simulation light experimental Tool”, prepared for
comparative and didactic reasons. jES is distributed under the Open Source Academic Free
License, see license.txt in the distribution and www.opensource.org/licenses/academic.php.

9. FUTURE IMPROVEMENTS

Besides a lot of technical improvement reported in the todo.txt file of the distribution, the
main improvement (anticipated in 3.5. above) of jES will be the introduction of agents

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.35/43

representing decision nodes, where rules and algorithms (like genetic algorithms or classifier
systems), or avatars of actual people, take action. Avatars’ decisions are taken asking actual
people what to do: in this way we can simulate the effects of actual choices; we can also use
the simulator as a training tool and, simultaneously, as a way to run economic experiments to
understand how people behave and decide in organizations.

10. A FEW EXAMPLES ABOUT ACCOUNTANCY

All the files that are necessary to run the examples reported below, can be found in the
testCases/ directory and used copying them (also whole directories, when necessary) into
the main directory of jES (see above 5.3.).

(The testCases/development/ subdirectory contains cases used to check the consistence of
the code while developing it).

10.1 CASE 030

To introduce a few notes about accountancy problem employing end units and internal
produced or procured items stored in them, we make, first of all, a test without end units and
with some simple recipes in orders, using OrderGenerator (see above 5.1.). In
jesframe.scm we have: ticksInATimeUnit 1, useOrderDistiller #f, totalUnitNumber 3,
totalMemoryMatrixNumber 0, maxStepNumber 4, maxStepLength 2, useWarehouses
#f, useNewses #f.

unitData/unitBasicData.txt contains:
unit_#__useWarehouse____prod.phase_#____fixed_costs_____variable_costs
 1 1 1 10 1
 2 1 2 10 1
 3 1 3 10 1

revenuePerEachRecipeStep = 21 and revenuePerCostUnit = 0 in jesframe.scm (this
value gives a benefit of 10 with fixed and variable costs 10+1).

We press 10 times Next button (at the end the graphs show 9 in the x scale).

The concluded order log (file log/ concludedOrderLog.txt) is:
Each line contains: final time unit; tick in the final time unit;
 recipe name; order layer; order number;
 starting time unit; tick in the s. time unit
 (number of steps); the recipe steps
 { the units that have been doing the various steps of the
 order (-1=step not executed, 'or' sequence) }
 [total cost of the order]; multiplicity
2 0 noName 0 2 1 0 (1) 1 { 1 } [11.0] 1
3 0 noName 0 1 0 0 (2) 1 1 { 1 1 } [22.0] 1
4 0 noName 0 3 2 0 (2) 2 2 { 2 2 } [22.0] 1
7 0 noName 0 4 3 0 (4) 3 3 1 1 { 3 3 1 1 } [44.0] 1
7 0 noName 0 7 6 0 (1) 3 { 3 } [11.0] 1
8 0 noName 0 5 4 0 (3) 1 2 3 { 1 2 3 } [33.0] 1
9 0 noName 0 9 8 0 (1) 2 { 2 } [11.0] 1

30 Look at the contents of the folder case0_OrderGenerator/ in testCases/ folder.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.36/43

10.1.1. COSTS OF CASE 0

We generate the file Costs/totalInventoryFinancialCosts.txt also when we have no stand
alone inventory production to avoid misunderstandings related to a previously generated file
produced by a run of the simulation that was using inventories: in our case the file is filled
with zeros.

The same choice is made for the file Revenues/dailyStoredComponentValue.txt.
The file Costs/totalDailyCosts.txt reports the sum of fixed and variable daily costs. It is set
to 0 at beginning of the day (here, each tick). In this case it contains31:
 +0.0000000000000000e+00
 +3.1000000000000000e+01
 +3.1000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01
 +3.3000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01

The interpretation of the data reported above is the following (rows are numbered from 0):

• row (or time unit) 0: at the beginning of the simulation, the production units are idle,
because orders are launched immediately after the execution of the production step of
each time unit; if the units are not producing for their warehouses to store inventories, our
simulated word starts with the first day32 orders (see above 6.1.1.); so in row 0 we have to
register no costs;

• row 1: an order has been launched at time 0; looking at the log of the finished orders
above we know that it is the second order in the list, reporting 0 as starting time unit; its
recipe33 is “1 1”, employing the same production unit (that able to perform the step 1, i.e.,
the unit 1, in this case) twice; within this time unit, the production unit 1 accounts fixed
and variable costs, for an amount of 11; the other units are idle and account only fixed
costs, for a global amount of 20;

• row 2: the second order in the log list is always active, but the order launched at time 1
(reported in the first line of the log list of the finished orders, being this order concluded
before the previous one) overpass it in a FIFO sequence (Fist In First Out) that ignores the
fact that the first order was already in production in the same unit and that now its
production has been suspended; how all this works: when the first step of the previous
order is concluded, the order goes newly to the same unit, but at the end of the waiting
list; to avoid this effect we can use the sameStepLifoAssignment option; within this
time unit, the production unit 1 accounts fixed and variable costs, for an amount of 11; the
other units are idle and account only fixed costs, for a global amount of 20;

• row 3: the third order in the log list, launched at time 2, is now employing production unit
2, able in doing a step 2; simultaneously, the first order in doing its second step in

31 The scientific format is used here for the output because we have no ex ante idea about the scale of the results.
Anyway, this is the automatic output produced by EZGraph Swarm object that is writing the file content.
32 Or shift or any other denomination of the unit of time we are considering.
33 This is the intermediate form (see 4.1. above) of the recipe, with each step repeated several times if its
execution time exceeds one time unit (second, minute, hour, day, …).

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.37/43

production unit 1; within this time unit, the production unit 1 and 2 account fixed and
variable costs, for a global amount of 22; the other unit is idle and accounts only fixed
costs, for an amount of 10;

• etc.

10.1.2. REVENUES OF CASE 0

The file Revenues/dailyRevenues.txt reports the revenues from finished orders (evaluated
using revenuePerEachRecipeStep set to 21, with revenuePerCostUnit set to 0). It is set
to 0 at the beginning of each day. We can compare the content of this file with that of the log
of the concluded orders. In our example the content is:
 +0.0000000000000000e+00
 +0.0000000000000000e+00
 +2.1000000000000000e+01
 +4.2000000000000000e+01
 +4.2000000000000000e+01
 +0.0000000000000000e+00
 +0.0000000000000000e+00
 +1.0500000000000000e+02
 +6.3000000000000000e+01
 +2.1000000000000000e+01

The file Revenues/dailySemimanufacturedOrderRevenues.txt reports the value of semi-
manufactured orders at a specific time (evaluated as above). We can compare the content of
the file with the launched and not concluded orders at each tick, as reported in the log file.
The content of the file is:
 +0.0000000000000000e+00
 +2.1000000000000000e+01
 +2.1000000000000000e+01
 +2.1000000000000000e+01
 +2.1000000000000000e+01
 +6.3000000000000000e+01
 +1.2600000000000000e+02
 +6.3000000000000000e+01
 +4.2000000000000000e+01
 +6.3000000000000000e+01

10.1.3. BENEFIT OF CASE 0

The file Benefit/benefit.txt reports benefit data from the beginning of the simulation; here it
shows the following results:
 +0.0000000000000000e+00
 -1.0000000000000000e+01
 -2.0000000000000000e+01
 -1.0000000000000000e+01
 +0.0000000000000000e+00
 +1.0000000000000000e+01
 +4.0000000000000000e+01
 +5.0000000000000000e+01
 +6.0000000000000000e+01
 +7.0000000000000000e+01

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.38/43

10.2. CASE 134

Now we run a second test without end units and with some simple recipes in orders, using
OrderDistiller (see above 5.1.). In jesframe.scm we have: useOrderDistiller #t,
totalUnitNumber 3, maxStepNumber 4, maxStepLength 2, useWarehouses #f,
useNewses #f.

unitData/unitBasicData.txt contains the same data as above in Case 0.

After 10 simulation time units, the concluded order log (file log/ concludedOrderLog.txt) is:
Each line contains: final time unit; tick in the final time unit;
 recipe name; order layer; order number;
 starting time unit; tick in the s. time unit
 (number of steps); the recipe steps
 { the units that have been doing the various steps of the
 order (-1=step not executed, 'or' sequence) }
 [total cost of the order]; multiplicity
1 0 recipeB 0 1 0 0 (1) 1 { 1 } [11.0] 1
4 0 recipeA 0 2 1 0 (3) 1 2 3 { 1 2 3 } [33.0] 1
5 0 recipeA 0 3 1 0 (3) 1 2 3 { 1 2 3 } [33.0] 1
6 0 recipeA 0 4 2 0 (3) 1 2 3 { 1 2 3 } [33.0] 1
7 0 recipeA 0 5 2 0 (3) 1 2 3 { 1 2 3 } [33.0] 1
8 0 recipeA 0 6 3 0 (3) 1 2 3 { 1 2 3 } [33.0] 1
9 0 recipeA 0 7 3 0 (3) 1 2 3 { 1 2 3 } [33.0] 1

This log is consistent with the content of the recipeData/recipes.xls file:

Recipes ;

 RecipeA 101 1 S 1 2 s 1 3 s 1 ;

 RecipeB 100 1 S 1 ;

The simulation follows the schedules:

recipeData/orderStartingSequence.xls file:

1 100 * 1 ;

recipeData/orderSequence.xls file:

1 101 * 2 ;

10.2.1. COSTS OF CASE 1

The file Costs/totalDailyCosts.txt reports the sum of fixed and variable daily costs. It is set
to 0 at beginning of the day. In this case it contains:
 +0.0000000000000000e+00
 +3.1000000000000000e+01

34 Look at the contents of the folder Case1_OrderDistiller/ in testCases/ folder.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.39/43

 +3.1000000000000000e+01
 +3.2000000000000000e+01
 +3.3000000000000000e+01
 +3.3000000000000000e+01
 +3.3000000000000000e+01
 +3.3000000000000000e+01
 +3.3000000000000000e+01
 +3.3000000000000000e+01

10.2.2. REVENUES OF CASE 1

The file Revenues/dailyRevenues.txt reports the revenues from finished orders (evaluated
using revenuePerEachRecipeStep set to 21, with revenuePerCostUnit set to 0). It is set
to 0 at the beginning of each day. In our example its content is:
 +0.0000000000000000e+00
 +2.1000000000000000e+01
 +0.0000000000000000e+00
 +0.0000000000000000e+00
 +6.3000000000000000e+01
 +6.3000000000000000e+01
 +6.3000000000000000e+01
 +6.3000000000000000e+01
 +6.3000000000000000e+01
 +6.3000000000000000e+01

The file Revenues/dailySemimanufacturedOrderRevenues.txt reports the value of semi-
manufactured orders at a specific time (evaluated as above). The content of the file is:
 +0.0000000000000000e+00
 +0.0000000000000000e+00
 +2.1000000000000000e+01
 +6.3000000000000000e+01
 +6.3000000000000000e+01
 +6.3000000000000000e+01
 +6.3000000000000000e+01
 +6.3000000000000000e+01
 +6.3000000000000000e+01
 +6.3000000000000000e+01

10.2.3. BENEFIT OF CASE 1

The file Benefit/benefit.txt reports benefit data from the beginning of the simulation; here it
shows the following results:
 +0.0000000000000000e+00
 -1.0000000000000000e+01
 -2.0000000000000000e+01
 -1.0000000000000000e+01
 +2.0000000000000000e+01
 +5.0000000000000000e+01
 +8.0000000000000000e+01
 +1.1000000000000000e+02
 +1.4000000000000000e+02
 +1.7000000000000000e+02

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.40/43

10.3. CASE 235

The third test uses end units (only one), with some simple recipes in orders, employing
OrderDistiller (see above 5.1.). In jesframe.scm we have: useOrderDistiller #t,
totalUnitNumber 3, totalEndUnitNumber 1, maxStepNumber 4, maxStepLength 2,
useWarehouses #f, useNewses #f.

unitData/unitBasicData.txt contains the same data as above.

unitData/endUnitList.txt contains (the initial double line has to be read as a whole line):
end_unit_#;_use_positive_code_for_layer_sensitive_end_unit;_negative_for_un
sensitive;_do_not_duplicate_the_codes,_neither_with_a_different_sign
10

After 10 simulation time units, the concluded order log (file log/ concludedOrderLog.txt)
is36:
Each line contains: final time unit; tick in the final time unit;
 recipe name; order layer; order number;
 starting time unit; tick in the s. time unit
 (number of steps); the recipe steps
 { the units that have been doing the various steps of the
 order (-1=step not executed, 'or' sequence) }
 [total cost of the order]; multiplicity
4 0 recipeA 0 2 1 0 (3) 1 2 3 { 1 2 3 } [33.0] 1
6 0 recipeA 0 4 2 0 (3) 1 2 3 { 1 2 3 } [33.0] 1
8 0 recipeA 0 6 3 0 (3) 1 2 3 { 1 2 3 } [33.0] 1

This log is consistent with the content of the recipeData/recipes.xls file:

Recipes ;

 RecipeA 101 1 S 1 2 s 1 p 1 10 3 s 1 ;

 RecipeB 100 1 S 1 e 10 ;

In this recipe list we have both a p process (procurement, see 2.3. and 3.4. above) and an e
key introducing the endUnit number 10.

The simulation follows the schedules:

recipeData/orderStartingSequence.xls file:

1 100 * 1 ;

recipeData/orderSequence.xls file:

1 101 * 1 100 * 1 ;

35 Look at the contents of the folder Case2_OrderDistiller/ in testCases/ folder.
36 We can tremendously increase the output of our simulated enterprise adding a second unit able to perform the
step 1.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.41/43

10.3.1 COSTS OF CASE 2

The file Costs/totalDailyCosts.txt reports the sum of fixed and variable daily costs. It is set
to 0 at beginning of the day. In this case it contains:
 +0.0000000000000000e+00
 +3.1000000000000000e+01
 +3.1000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01
 +3.2000000000000000e+01

10.3.2 REVENUES OF CASE 2

The file Revenues/dailyRevenues.txt reports the revenues from finished orders (evaluated
using revenuePerEachRecipeStep set to 21, with revenuePerCostUnit set to 0). It is set
to 0 at the beginning of each day. In our example its content is:
 +0.0000000000000000e+00
 +0.0000000000000000e+00
 +0.0000000000000000e+00
 +0.0000000000000000e+00
 +8.4000000000000000e+01
 +0.0000000000000000e+00
 +8.4000000000000000e+01
 +0.0000000000000000e+00
 +8.4000000000000000e+01
 +0.0000000000000000e+00

The file Revenues/dailySemimanufacturedOrderRevenues.txt reports the value of semi-
manufactured orders at a specific date (evaluated as above). The content of the file is:
 +0.0000000000000000e+00
 +2.1000000000000000e+01
 +4.2000000000000000e+01
 +8.4000000000000000e+01
 +4.2000000000000000e+01
 +8.4000000000000000e+01
 +4.2000000000000000e+01
 +8.4000000000000000e+01
 +4.2000000000000000e+01
 +8.4000000000000000e+01

10.3.3. BENEFIT OF CASE 2

The file Benefit/benefit.txt reports benefit data from the beginning of the simulation; here it
shows the following results:
 +0.0000000000000000e+00
 -1.0000000000000000e+01
 -2.0000000000000000e+01
 -1.0000000000000000e+01
 +0.0000000000000000e+00

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.42/43

 +1.0000000000000000e+01
 +2.0000000000000000e+01
 +3.0000000000000000e+01
 +4.0000000000000000e+01
 +5.0000000000000000e+01

10.3.4. DEEPENING CASE 2

Now we introduce a thorough reconstruction, in Figure 22, of the sequence of the events.

Figure 23. The sequence of the events in Case 2.

In a parallel way we introduce, in Figure 24, a detailed reconstruction of the accounting
operations.

The reader, that want check completely these tables, has all the necessary data above; she can
also run the simulation using the file of the testCases/Case2_OrderDistiller/ folder.

Incomplete draft (v. 0.2.3.), (the English language has to be checked), please do not quote. p.43/43

Figure 24. Case 2 accounting.

10.4. OTHER CASES

In the testCases/ folder we have also Case 2sab37 and Case 2sb38, not reported here: 2sab
uses stand alone batches (see 2.2.2. above) and 2sb uses sequential batches (see 2.2.1 above).

REFERENCES

GILBERT N., TERNA P. (2000), How to build and use agent-based models in social science. In
Mind & Society, no. 1, pp. 57-72.

37 Look at the contents of the folder Case2sab_OrderDistiller/ in testCases/ folder.
38 Look at the contents of the folder Case2sb_OrderDistiller/ in testCases/ folder.

