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?. RULES AND USE 

internal unit numbers (also printed on the active terminal if some error arises) are different 
from those contained in unitData?/ unitBasicData.txt file (where ? is the stratum number); 
the internal number is indeed obtained from that of the file and adding to it two zeros in case 
of a unit created while the simulation is running or a progressive number from 00 to 99 in 
case of initial creation (multiple creation requires this addition to the number) 

 

when we assign (via OrderDistiller or via OrderGenerator) an order, if no unit can receive it, 
the potential production (obviously lost) is anyway accounted 

 

if more than a unit can perform a task, the first one in the unit list is used; look below, the unit 
lists are randomly reordered 

the order of the sequence of the models and of the unit within a model is randomly changed in 
each cycle, via the schedule of each model  (the order of the models is changed only by one of 
the models; each model reorders its unit list); this is generally sufficient to avoid any 
systematic effect in accessing to units 

anyway, if we assign a lot of equal orders in a cycle, all the orders are kept by the same (first) 
unit able to do the first step, regardless to all the other units able to do the same step; to avoid 
this effect, assigningTool.java, when executing the assign() method, do not repeat 
assignment to the same unit if uniqueAssignmentInEachCycle is set to true; the default is 
false, to speed up the execution and for compatibility reasons with the previous jESevol 
simulations 

the choice above is not convenient if we have a quantity of assignments that overcome the 
that of the unit in each cycle (after having assigned to each unit an order, all the remaining 
assignment are lost); in this case it is better to shuffle the list at each assignment, admitting 
more than one assignment to the same unit in the same cycle (also having some unit without 
assignments); this is done if the shuffleListsAtEachAssignment is set to true; the default is 
false, to speed up the execution and for compatibility reasons with the previous jESevol 
simulations 

When do work uniqueAssignmentInEachCycle and shuffleListsAtEachAssignment?  

                                                 
ϒ related to jesopenfoundation-0.0.21 
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For uniqueAssignmentInEachCycle the choice true is active for the units belonging to the 
stratum where the choice is made, independently from the stratum of the sending unit or of 
the order generator/distiller. 

For shuffleListsAtEachAssignment the choice true is active for the units receiving an order 
(with a unit or the order generator/distiller as sources) from the stratum where the choice is 
made, independently from the stratum receiver. 

use carefully uniqueAssignmentInEachCycle and shuffleListsAtEachAssignment 
together. 

NB NB if a zero time step uses the same production phase or the unit the order is in, the order 
is LIFO reassigned to the same unit and executed, regardless the 
uniqueAssignmentInEachCycle value; this shortcut operates only for assignment from unit 
to unit, also in the hidden case of the added zero time steps always used to conclude the 
computational steps 

 

zero time step are in the form 1111 s 0, which are immediately executed in a clock tick 
regardless of how many they are (1111 here is a fictitious production unit). 

the min level of inter-visibility; below this level two units cannot exchange products; this 
value is not used in assignment coming from OrderGenerator; this value can be different from 
one model to another: that of the sending unit is used 
between to units, if the second (destination of the order) does not belongs to the area of the 
first (sending units) inter visibility does not work; the inverse situation works 

 

Figure 1. xxx 

Using computational steps we can also use general matrixes; if this is the case, we have to 
create a memoryMatrixes.txt file in unitData0/ folder; the other models (in stratum 1, 2, …), 
if existing, have to copy all information about general matrixes from the first model (that in 
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stratum 0). The first row of the file must contain exactly the following text sequence 
“number(from_0_ordered)_rows_cols”. 

 

Each unit as a public memory matrix of 10 rows and 10 cols; all the element of each matrix 
are initially filled with 0. Units have the printDirectlyMemoryMatrix() method that prints 
their memory matrix on the active terminal, regardless the printMatrixes value. This method 
is introduced mainly to be used via the probe of the unit). -1 is the conventional number for 
unit matrixes. 

We have also a probe, from the observer, to each memory matrix; placing the matrix number 
(remember, starting from 0), in the right cell of the printMemoryMatrixNumber probe, 
pressing the enter button of the keyboard to confirm the inserted value and finally pressing the 
printMemoryMatrixNumber button itself we obtain the content of the matrix in the active 
terminal. Remember: before accessing the matrixes, the program has to be run to execute its 
starting tasks. 

 

Placement rules for a new unit: when a new unit is created, if its destination position in unit 
space is occupied (and when a copy is made, the destination position is always occupied), we 
search for a free position in one of the eight possible directions around the initial position, 
moving forward following a straight line until we find a free position; the max movement is 
conventionally set in unitSpaceXSize + unitSpaceYSize steps. After that, the unit is not 
created. 

As in jesframe, zero time orders are introduced in units in a LIFO way. 

 

If maxInactivity == 0 units are never dropped if inactive; the same if 
maxUnsentProducts == 0, the units are never dropped if unable to send products. In both 
cases the unit histograms (down and right) are not shown. 

 

Unsent orders, when becoming a lot, can slow down the simulation, for unuseful attempt of 
assignments (e.g. preys not finding grass to eat and not perishing for some reason); in this 
case use the maxTicksAsUnsent parameter, related to the units of each stratum, stating the 
max number of ticks the orders can spend in the unsent condition in a unit; when their time 
expires, the orders are dropped. 

?. APPLICATIONS 

Applications are: 

• test0_generator(basic_run): up to 4 independent models with orderGenerator 

• test1_distiller: 2 or more models with orderDistiller; models 0 and 1 are interdependent 
(recipes and sequence are in 0); model 2 and 3 if used do not receive orders (but we can 
switch them to orderGenerator) 

• test2_distiller_generator: 4 models, with 0 and 1 using orderDistiller and 
interdependent; 2 and 3 with orderGenerator, but 3 receiving also recipes from model 0 
orderDistiller (recipes and sequence are in 0) 
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• test3_distiller_comp_steps: 2 models, with orderDistiller and computational steps; 
models 0 and 1 are interdependent (recipes and sequence are in 0, with test computational 
1998 and 1999 and with a recipe containing a zero time step); 

• test4_11xx_comp_steps: 3 models, only the third – used strictly as a recipe launcher – 
with orderDistiller; the recipes contains 1100, 1101, 1102 and 1103 computational 
steps, specific of the jeSOF environment (matrix values loader, unit creation, unit drop 
and unit copy, also with zero time steps); we have here two different .smc files; that not 
active contains the shuffle choice (see above), without queue in sending orders (which 
appear if we chose uniqueness of assignment, due to the impossibility/difficulty of finding 
a free receiving unit) 

• firstEvolApplication: the jESevol app used for SwarmFest 2004, running also in jESOF; 
use the x.y launching files; 

• tutorial, with several steps (see above paragraph ?.?): 

o step1: grass creation (the grass is the food of the preys); 

o step1: the preys’ life (the preys are the food of the predators); 

 

4.4. COMPUTATIONAL CAPABILITIES AND MEMORY MATRIXES 

jES has computational capabilities that can be associated to each step of a recipe. To use this 
feature of the program it is necessary to understand the Java language, as we have to modify2 
the ComputationalAssembler.java file (which inherits its default methods from the class 
ComputationalAssemblerBasic). Computational capabilities are aimed to forecasting, 
evaluations, auctions to choose procurements, … 

                                                 
2 We have not to modify the basic file (ComputationalAssemblerBasic.java), which is included in the src/ 
folder. Instead, we have to copy the file ComputationalAssembler.java from src/ in the main folder. 
The ‘make run’ command uses the classes contained in lib/jesframe.jar (which are those contained in src/), but 
the classes in /. override those in jesframe.jar. 
ComputationalAssembler.java contains no method; we simply add methods, following the examples reported 
below and using as a guide the full code or the methods reported in ComputationalAssemblerBasic.java. New 
methods are automatically used by the checkingComputationsAndFreeingOrders() method of 
ComputationalAssembler class (which inherits it from its parent class): the trick used to convert the numerical 
code of the computational steps into a recognized method reference is based on the Java reflection mechanism. 
To understand the trick, looks at the following lines in ComputationalAssemblerBasic.java code: 
Class c = this.getClass(); 
Method m = c.getMethod("c"+(-1*t),null); 
m.invoke(this, null); 
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Figure 18?. An example of memory matrixes declarations: the ID numbers are ordered and 
start from zero.  

Computations use data contained in memory matrixes created according both the 
totalMemoryMatrixNumber parameter and the contents of the file 
unitData/memoryMatrixes.txt, shown, as an example, in Figure 18. Memory matrixes use 
order layers (see above 2.1.) in a completely automated way; we can prevent them from using 
layers setting their ID number as negative in each specific declaration into the file 
unitData/memoryMatrixes.txt. In the example reported here, the second matrix (numbered 
1, being 0 the number of the first one) is insensitive to layers3. 

Examples of recipes containing computational steps are reported in Figure 19; obviously, to 
understand the meaning and the behavior of a computation it is necessary to consider together 
both the sequence of the events emerging from the various orders in execution (with the 
related operations interesting the memory matrixes) and the content of the Java code of the 
computational operator itself. 

It is important here to consider both the external (human readable) format of the recipes and 
the intermediate one, always human readable, but semi-translated (see above 4.1.). Code 
numbers of the computational steps are established in the range 1001-1999. 

The format of a computation is: ‘c code n m1 … mn’ where c is mandatory, code is the code 
of the computation, n is the number of matrixes to be used and ‘m1 … mn’ are the ID 
numbers of those matrixes, as reported in the file unitData/memoryMatrixes.txt (Figure 18). 

                                                 
3 -0, as a number, is equal to 0, so the first matrix cannot be declared unsensitive to layers. 
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Figure 19?. The format of the computational processes.  

We introduce some recipes (Figure 19) with computations as a complete example, to explain 
the dynamics of the events and the Java code related to them. To prepare other computational 
tools, we have to add lines similar to those introduced below (Figures 20 and 21) into the 
ComputationalAssembler class (ComputationalAssembler.java, as explained in note 
above). 

In Figure 19 we can see how computational codes are represented following their external and 
intermediate formats (anyway, remember that we write recipes in external code). Pay 
attention: computational codes at the intermediate format representation level are reported as 
negative, following the internal convention of jES, where all the codes related to production 
steps are positive, while numbers bearing special meanings are negative. 

The Java codes, extracted from ComputationalAssembler.java and reported in Figures 20 
and 21, interact with the recipes of Figure 19. 

When an order with recipe ‘1 s 1 c 1998 1 0 5 s 2’ is executed, at the end of the two units 
of time required by step 5, matrix 0 is interested by a writing operation in position (0,0) in the 
proper order layer (determined by the level of the order containing the recipe); if the order 
contains the recipe ‘1 s 1 c 1998 1 1 6 s 2’ the writing operation, at the end of step 6, 
concerns matrix 1 at position (0,0) without layer, being that matrix insensitive to layers by 
construction; if the order contains the recipe ‘1 s 1 c 1998 1 3 7 s 2’, the writing operation, 
at the end of step 7, concerns matrix 3 at position (0,0) in the proper layer, as above. In the 
Java code of Figure 20 we can see how these operations, made on mm0 matrix (but we can 
use any name), are related to the actual matrix via the getMemoryMatrixAddress method; 
the setValue method set the 1.0 value at position (0,0). If the matrix is insensitive to layers, 
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the layer value set in this method is disregarded. Finally, the computational step is set to 
done4. 

 

Figure 20?. The Java code (simplified eliminating a control statement related to the 
consistence of the declared number of matrixes with the internal ones).  

When an order with the recipe ‘1 s 1 c 1999 3 0 1 3 2 s 2 3 s 2’ is executed, at the end of 
the two units of time required by step 2, a check (see Figure 21) is performed on matrixes 0, 1 
and 3 to verify whether positions (0,0) are empty at the proper layer; if they are not empty, the 
‘c 1999’ computation sets those positions (at the proper layers) to empty and finally sets the 
computational step to done5. Into the code of this example, the matrixes mm0, mm1 and 
mm2 are linked to actual matrixes 0, 1 and 3 via the list ‘0 1 3’ used into the recipe (the 
internal names are completely free). 

The effect of those four recipes (the OrderGenerator, while testing the program, if 
totalEndUnitNumber is greater than 0, launches those recipes at random) is the following: 
the recipe containing the code ‘c 1999’ cannot proceed to step 2 if the effects of one of each 
of the recipes containing codes ‘c 1998’ do not exist (those effects are produced when recipes 
are executed at least at step 5 or 6 or 7). When the recipe containing the code ‘c 1999’ finally 
proceeds to its successive step, the effects of the “used” recipes are eliminated and must be 
renewed by other similar orders. 

Methods accepted by the MemoryMatrix instances are setValue, getValue, setEmpty, 
getEmpty (returning true or false). 

                                                 
4 If the Java code related to a computational method does not set the done variable to true the order is not freed 
and does not proceed to its successive recipe step; the computational step will be repeated in any simulation 
cycle, until the done variable becomes true. 
5 See previous note. 
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Figure 21?. The Java code (simplified eliminating a control statement related to the 
consistence of the declared number of matrixes with the internal ones.  

The syntax is (leave layer as is and set the proper value of the variable as shown in the 
examples): 
• setValue(layer, (int) row, (int) col, (double) value) or setValue(layer, (int) row, (int) 

col, (float) value) 
• (float) getValue(layer, (int) row, (int) col) 
• setEmpty(layer, (int) row, (int) col) 
• (boolean) getEmpty(layer, (int) row, (int) col) 
Where the setEmpty and the getEmpty methods are useful to manage conditional situations; 
to set to “not empty” a position of a matrix, we simply put a value in it; getEmpty returns 
true if no value is found, otherwise it returns false. 
To look directly to the content of a matrix we can use the print method, as shown above in 
Figure 20; if, in the probe of the observer, the field printMatrixes is set to true, the print 
method displays the content of the matrix on the current terminal; the empty positions of the 
matrix are reported as not available (NA). 
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4.4.1. A SPECIAL CASE: RECIPES LAUNCHING RECIPES 

A special case is that of recipes launching other recipes, via the computational step 1002: in 
‘1 s 1 c 1002 1 3 7 s 2’ at the end of step 7 (which, in this case, is lasting 2 units - of type s 
- of time). The computational step launches the recipe whose code is contained in position 
(0,0) of the matrix with code 3. 

We can use m memory matrixes (of dimensions 1x1 or bigger) to hold the codes of recipe s to 
be launched from other recipes. 

To fill the (0,0) positions of these matrixes with the recipe codes, we use the computational 
step 1001, with a recipe containing ‘c 1001 3 0 1 3 100 s 1’ (suppose here m=3); here unit 
100 can be a fictitious one, used only to allow this kind of computations. The recipe codes to 
be placed in matrixes 0, 1 and 3 (note that it is not necessary that they are ordered and 
consecutive) will be retrieved in recipeData0/recipesFromRecipes.txt, written in free 
format. Two restrictions: first, a maximun of 10 recipe codes to be launched is allowed (but 
can be modified in ComputationalAssemblerBasic.java); second, a maximun of 1.000 
launches is allowed per tick (but can be modified in OrderDistiller.java). NB underline that 
in jESOF recipesFromRecipes.txt must be in recipeData0/. 

4.4.2. COMPUTATIONAL STEPS DEALING WITH UNITS 

From 1101 to 1199 we can have computational steps dealing with units; these are definitive 
computational steps, kept in ComputationalAssemblerBasic.java, in the src/ folder. 

At present we have: 

1100 –this computational step acts as generalized matrix loader that places the values found 
in unitData0/memoryMatrixContents.txt file in the matrixex and rows and cols reported in the 
same file; the number of the matrixes used here must be less or equal to 
totalMemoryMatrixNumber (the first m matrixes of these ones); beside this, m has to be less 
than 10; it is mandatory to enter all the m defined matrixes in their original order in the c 
1100 m m1 m2 ... command; values in the unitData0/memoryMatrixContents.txt can be in 
any order; finally this computational step changes the status to done; may be this kind of 
computational steps is included in a recipe launched by an OrderStartingSequence.xls file; 

1101 – this computational code creates a new random unit in the model stratum reported in 
position 0,1 of the unique received matrix, with the probability set in position 0,0 of the same 
matrix; finally it changes the status to done; 

1102 – this computational code drops the unit the order is in, with the probability set in 
position 0,0 of the first received matrix and increases the position 0,1 of the second received 
matrix by 1, to count the dropped units; this computational step must be in the last step of the 
order, because the dropped unit cannot send it to the successive one; the computational step, 
before setting the unit to be dropped, applies the orderDoneStep() method to the order, for 
accounting purposes; finally it changes the  status to done; 

1103 – this computational code creates a copy of the unit the order is in the model stratum of 
the original unit, near to it with the standard placement rule, with the probability set in 
position 0,0 of the unique received matrix; the count of the created units is reported increasing 
by one the position 0,1 of the second received matrix; finally it changes the status to done; 
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4.4.3. UTILITIES 

From 1201 to 1299 we can have computational steps used only in specific projects. 

As examples we have: 

 

?.?. TUTORIAL 

The tutorial is related to the implementation of a Predator Prey model6, with three strata:  

i. the grass stratum, where we have the grass continuously growing; if the preys are 
too dense in the space, grass growth rate may be insufficient to assure the food for 
all of them; 

ii. the prey stratum, being the preys the food of the predators; 

iii. the predator stratum. 

?.?. ?. THE TUTORIAL STEP 1: THE GRASS 

In level (i) we create a unique type of units (the grass), e.g. 10, with initial creation prob.= 1 
and new unit generation prob.= 0 in successive cycles, in a 20×20 square; each unit has eight 
small squares of fixed visibility around it (the visibility is used by the preys to find and eat the 
grass). We use OrderDistiller as external source of the events, launching a certain number of 
events in each cycle of the simulation. 

We launch, in each cycle, following recipeData0/orderSequence.xls, the recipe 
grassGeneration (look at recipeData0/recipe.xls spreadsheet file) containing a c1103 
computational steps, which tells to its receiving unit of creating a copy of itself, placing it in 
its neighborhood. The 1103 computational step looks at its unique matrix to read, in (1,0), the 
probability of acting (0.8 in our case). We have one memory matrix; its content is loaded via 
the 1100 computational step contained in the utility recipe in recipeData0/recipe.xls; this 
step load the values contained in dataUnit0/memoryMatrixContents.txt. 
Having maxInactivity = 0 and maxUnsentProduct = 0 units never die. 

The utility recipe is launched only once in the simulation, via 
recipeData0/orderStartingSequence.xls; the grassGeneration recipe is launched 
repetitively in each cycle of the simulation (10 in each cycle), via 
recipeData0/orderSequence.xls; we can change both the quantity in each cycle (try for 
example with 50, with a logistic effect in the unit number curve), both with 
uniqueAssignmentInEachCycle set to true (as is) and alternatively with 
shuffleListsAtEachAssignment set to true and the other parameter switched off (try also to 
switch off both). 

We can also use OrderGenerator as source of external events (with small unused recipes in 
this case, having set maxStepNumber = 1 and maxStepLength = 1 in random recipes), 
setting by hand (interactively) newUnitGenerationP to a non zero value (also to 1). 

                                                 
6 Remember O. Malcai, O. Biham, P. Richmond and S. Solomon, Theoretical Analysis and Simulations of the 
Generalized Lotka-Volterra Model, file 0208514.pdf in my PC. 
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Obviously we can start with immediately more grass, as in the next step, but anyway the 
process of grass development has to be managed. 

?.?.?. THE TUTORIAL STEP 2A: THE PREYS 

Also in level (ii) we create a unique type units, that of the preys. Then we launch, in each 
cycle, following recipeData1/orderSequence.xls: 

a. orders with recipe n.1 ‘preysEating’, containing the computational operations with step 
c1202 (a code for the prey-predator tutorial); this computational code acts via c1102 code 
to drop the unit the order is in, with the probability set in position 0,0 of the first received 
matrix and increases the position 0,1 of the second received matrix by 1, to count the 
dropped units; finally, it adds 1 to pos. 0,0 of the sending unit  memory matrix, to count its 
eating acts; 

b. orders with recipe n.2 ‘preysPerishing’ (unsufficient food, i.e. energy), containing the 
computational code c1204 (a code for the prey-predator tutorial); this computational code 
acts via c1102 code to drop the unit the order is in, if pos. 0,0 value of the unit memory 
matrix is less then the parameter in 1,2 (minEnergy) of the second received matrix; c1102 
acts with the probability set in position 1,0 of the first received matrix (internal trick: 
c1102 looks for 0+rd,0+cd using temporary rd (the row displacement) set to 1; c1102 
increases the position 1,1 (always via the displacement, being the internal coordinates 
0+rd,1+cd, of the second received matrix by 1, to count the dropped units. 

c. orders with recipe n.3 ‘preysConsuming’ (decreasing energy), containing the 
computational code c1205 (a code for the prey-predator tutorial); this computational code 
acts with the probability set in position 2,0 of the unique received matrix to decrease of 1 
unit the position 0,0 of the memory matrix of the unit the order is in; 

d. orders with recipe n.4 ‘preysReproducing’ (creating a copy of themselves near to their 
position, if their energy is sufficient), containing the computational code c1206 (a code 
for the prey-predator tutorial); this computational code acts via the c1103 code to create, 
with the probability set in position 3,0 of the first received matrix (c1103 see it with rd=3 
as 0+rd,0+cd), a copy of the unit the order is in, near to it, if the unit the order is in has 
sufficient energy (comparing position 0,0 of the unit memory matrix and position 3,2 of 
the second received matrix, i.e. if energy ≥ requested level to reproduce); using c1103 we 
have also in 0,1 of the second matrix the count of the created unit (here in position 3,1 of 
the second received matrix, with rd=3). 

The content of the memory matrixes is now: 
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matrix 0 
Probability for 
recipe 1 in stratum 
0, grass creation 

Count of the 
created grass 

 

matrix 1 
acting probability 
for recipe 1 in 
stratum 1, preys 
eating grass 

count of grass ate 
(dropped) 

NA 

acting probability 
for recipe 2 in 
stratum 1, preys 
perishing 

count of perished 
preys (dropped) 

perishing if energy 
in 0,0 of unit 
memory matrix is 
< the level set here 

acting probability 
for recipe 3 in 
stratum 1, preys 
consuming 

NA NA 

acting probability 
for recipe 2 in 
stratum 1, preys 
reproducing 

count of the 
created preys 

Reproducing if 
energy in 0,0 of 
unit memory 
matrix is ≥ the 
level set here 

 

?.?.?. THE TUTORIAL STEP 2B: THE PREYS, SECOND ALTERNATE VERSION 

In level (ii) again, we always create a unique type units, that of the preys. Then we launch, in 
each cycle, following recipeData1/orderSequence.xls, a simplified set of secipes, if 
compared to that of step2a, both to speed up the simulation and to obtain a better control of 
events like the preysConsuming and the preysPerishing, which must attain once all the units 
in each cycle: 

 


