
How to use jVE program (August 2002, Pietro Terna)

(jveframe-0.9.7.10.tar.gz)
INCOMPLETE DRAFT, please do no quote

A “two sides” world description and a consistent program

The first approach to how to use jVE (Java Virtual Enterprise), or jveframe (a frame used to
develop virtual enterprise models based on the Java version of Swarm), introduces the
existence of two independent sides in our world description and representation and, in a
consistent way, in our program.

Our simulated enterprise has both orders to accomplish – each described by a “recipe” that
contains the WD (What to Do) side or the world - and units that perform the different steps of
the production process, which represent the DW (which is Doing What) side of the same
world.

Units can be within the firm or outside. In the second case: (i) constituting other complex
enterprises or (ii) standing alone as small business actors.

It is useful to introduce here a dictionary of our terms:

• a unit is a productive structure within or outside our enterprise; a unit is able to perform
one or more of the steps required to accomplish an order;

• an order is the object representing a good to be produced; an order contains technical
information (the recipe describing the production steps) and accounting data;

• a recipe is a sequence of steps to be executed to produce a good.

Figure 1. A simplified view of the jVE components.

The core of the model is the clean separation between the order and the units: WD and DW
are completely independent, in formalism and in code. So, running the model, we check the

 2

consistency of the two sides, as in the actual world, where the output of an enterprise arises
from a complex interaction among products and production tools. As we will see above,
recipes can also describe internal parallel production paths, computational steps, batch
activities and assembly phases, where the typical procurement problems of a supply chain can
be tested (with or without just in time requirements).

A simplified view

A simplified view is that of Figure 1.
This is an introductory view of the world, with the recipes written in a simplified way; i.e., as
a sequence of steps to be executed without information about the time required by each step.
Observing the recipe 8-28-27-7 we can see that the front end (FE) of an enterprise can take in
charge the first step, which will be executed by unit 8 (in this simplified version, unit and step
numbers are coincident) within the enterprise.

Figure 2 now introduces a more dynamic interpretation of the world we are describing.

Figure 2. A dynamic view of the jVE components.

We have here three simple phases (a, b, c) in which the order containing the recipe 8-28-27-7
goes from one unit to another; in this sequence, all the needed information is contained in the
order: when the activity of a unit (as an example, unit 8) is concluded, the unit asks to the
order what is the next step to be performed and then it asks to all the units that is able to
execute that task. In this way, the order makes its journey from unit 8 to unit 28 (which is
outside the enterprise and can be considered as a simple business unit) and to unit 27 (similar
to 28). In the next step, signed with an x in Figure 2, we have a choice problem, having to unit
able to perform task 7. Below we will introduce a unit criterion properly to deal with this kind
of problem in our simulation.

 3

A remark, a little bit more abstract. One of the two units named 7 belongs to another
enterprise, so we can imagine of having to open a dialog with the front end of the other
enterprise. Anyway we have also to take in consideration the possibility of a direct link with
the unit within the other enterprise. The idea of linking together the subunits of more complex
enterprises to obtain specific productive results bring directly to the concept of virtual
enterprise as an organizational tool: as an example, look at NIIIP project (National Industrial
Information Infrastructure Protocols), which as a site at http://niiip01b.npo.org/2.

A closer look to the WD side

We told that our simulated enterprise has orders to accomplish; the orders are described by
the recipes that contains the WD (What to Do) side or the world.

Figure 3. Basic recipe.

The basic recipe in an order is structured as shown in Figure 3.

1 In the site we can read that: “The NIIIP Consortium consists of a group of leading United States information
technology suppliers, industrial manufacturing end users, academic, and standards organizations with a common
interest in developing an information infrastructure architecture to enable organizations to operate as "Virtual
Enterprises". Virtual Enterprises are teams, consortia or alliances of companies formed to exploit business
opportunities that can not be addressed by a single organization.”
“The NIIIP Consortium is national in scope and its members bring a wealth of experience and technology to
support Virtual Enterprises. Together with the Federal Government, they share costs and skills to create the
necessary infrastructure to support Virtual Enterprises across the United States. The NIIIP Consortium has
entered into a series of cooperative agreements with the Federal Government and associated agencies to develop,
demonstrate, and prototype industrial «Virtual Enterprises».”
2 In the site we can read that: “The NIIIP Consortium consists of a group of leading United States information
technology suppliers, industrial manufacturing end users, academic, and standards organizations with a common
interest in developing an information infrastructure architecture to enable organizations to operate as "Virtual
Enterprises". Virtual Enterprises are teams, consortia or alliances of companies formed to exploit business
opportunities that can not be addressed by a single organization.”
“The NIIIP Consortium is national in scope and its members bring a wealth of experience and technology to
support Virtual Enterprises. Together with the Federal Government, they share costs and skills to create the
necessary infrastructure to support Virtual Enterprises across the United States. The NIIIP Consortium has
entered into a series of cooperative agreements with the Federal Government and associated agencies to develop,
demonstrate, and prototype industrial «Virtual Enterprises».”

 4

Here we have a sequence of steps followed by a time specification and by a time quantity:
step n1 requires m1 units of time (days, hours o seconds, following ts choice). Time quantities
are integer numbers.

Obviously we have productions requiring less than one second to make a certain step, but in
these cases it is not realistic to think about processes concerning separately single pieces. A
realistic view is that of considering the production as batches of pieces. We have to kind of
batches in our world: sequential batches and stand alone batches.

A sequential batch process – as reported in Figure 4 – deals simultaneously with a lot of
orders, being one of the steps of a recipe. We have to imagine a productive process that is
separately managed for each order, but that for certain steps requires an activity referred to a
group of orders to be processed together: this is a sequential batch, formally expressed as in
Figure 4.

Figure 5. Sequential batch.

A stand alone batch process, described in Figure 6, is similar to a sequential one (we use here
“/” instead of “\”), but it is not included in a recipe with other steps: it is the only step of a
recipe describing a process considered as a black box: imagine in this case external
procurements that our enterprise is ordering in batches of a large dimension, requiring a time
delay to be accomplished. In the just in time perspective, the determination of the time point
in which to start a stand alone batch order is very important, properly due to the time delay
necessary to produce the whole bunch.

 5

Now it would be the time of introducing the procurements, which are key elements in running
the virtual enterprise, but we have to know something more about units and “end units”, so we
go to the DW side; then we will come back to WD.

Figure 6. Stand alone batch.

A closer look to the DW side

@@@The DW (which is Doing What) side of the same world is related to units and to “end
units”.

A unit is the elementary production cell able to accomplish one or more kind of step of a
recipe; steps in recipes are identified by number, as we have seen; units too express the steps
that they are able to accomplish as numbers.

Simple units, which are able to deal only with one kind of steps, are easily described using the
file unitData/unitBasicData.txt that contains the information of Figure 7.

The first line is mandatory, written as is, to force the user to pay attention to the content of the
file. Then we have lines reporting: (i) the numbers of the unit (lines have not to be ordered by
unit number); (ii) the specific step that the unit is able to do (several units can be able to
perform the same step): (iii)

 6

Figure 7. Simple units ???.

Complex units

Figure 8. Complex units ???.

End units

 7

Figure 9. End units ???.

To be implemented: units locking resources for other units

Warehouses

Newses

Newly back to the WD side

Procurements, OR, AND; layers, memory matrixes

Computational capabilities and memory matrixes

jVE has computational capabilities that can be associated to each step of a recipe. To use this
feature of the program it is necessary to understand Java language, as we have to modify3 the
ComputationalAssembler.java file. The goal of the computational capabilities is that of
dealing with forecasting, evaluations, auctions to chose procurements, …

3 We have not to modify the original file, which is included in the src/ folder in the main folder (./) of the
program; copy instead the file from src/ to ./ and modify the copy; the ‘make run’ command uses the classes
contained in lib/jveframe.jar (which are those contained in src/), but the classes in ./ overriding those in
jveframe.jar.

 8

Computational results are also used as a choice criterion in OR sequences (not yet
implemented).

Computations use data contained in memory matrixes create following both the
totalMemoryMatrixNumber of the model probe (this parameter can be also set via the
jveframe.scm file) and the contents of the file unitData/memoryMatrixes.txt shown in Figure
xa. Memory matrixes uses layers in a completely automated way; we can prevent them from
using layers setting their number as negative in each specific declaration into the file. Here the
second matrix (numbered 1, being 0 the number of the first one) in insensitive to layers

Figure xa. Memory matrixes declarations.

Recipes contain computational step as reported in Figure xb; obviously, to understand the
meaning and the behaviour of a computation it is necessary to consider together both the
sequence of the events emerging from the various orders in execution (with the related
operations interesting the memory matrixes) and the content of the Java code of the
computational operator itself.

As seen above (not jet written …), it is important here to consider both the external (human
readable) format of the recipes and the intermediate one, always human readable, but semi-
translated. To see the internal code (apparently poor in details) you can have a look to the
comment lines in Order.java file. Code number of computational steps are accepted in the
range 1001-1999.

The format of a computation is: ‘c code n m1 … mn’ where ‘c’ is mandatory, ‘code’ is the
code of the computation, ‘n’ is the number of matrixes to be used and ‘m1 … mn’ are the
numbers of those matrixes, as reported in the file unitData/memoryMatrixes.txt (Figure xa).

We introduce some recipes (Figure xb) with computations as a complete example, to explain
the dynamics of the events and the Java code related to them. To prepare other computational
tools you have to add lines similar to those introduced below (Figure xc1 and xc2) into the
ComputationalAssembler class.

In Figure xb we can see how computational codes are represented following their format. Pay
attention: computational codes at the intermediate format representation level are reported as
negative, following the internal convention of jVE, where all the codes related to production
steps are positive, while numbers bearing special meanings are negative.

 9

The Java Swarm codes, extracted from ComputationalAssembler.java and reported in Figure
xc1 and xc2, interact with the recipes of Figure xb.

When an order with recipe ‘1 s 1 c 1998 1 0 5 s 2’ is executed, at the end of the two units of
time required by step 5 matrix 0 is interested by a writing operation in position (0,0), at the
proper layer (determined by the level of the order containing the recipe); if the order contains
recipe ‘1 s 1 c 1998 1 0 6 s 2’ the writing operation, at the end of step 6, concerns matrix 1 at
position (0,0) without layer, being that matrix insensitive to layers by construction; if the
order contains recipe ‘1 s 1 c 1998 1 0 7 s 2’ the writing operation, at the end of step 7,
concerns matrix 3 at position (0,0), at the proper layer, as above. In the Java code of Figure
xc1 we can see those operation made upon a symbolic mm0 (but we can use any name)
related to the actual matrix via the getMemoryMatrixAddress method; the setValue method
set the 1.0 value at (0,0). If the matrix is insensitive to layers, the layer value set in this
method is disregarded. Finally, the computational step is set ‘done’.

Figure xb. The format of the computational processes.

When an order with recipe ‘1 s 1 c 1999 3 0 1 3 2 s 2 3 s 2’ is executed, at the end of the two
units of time required by step 2, matrix 0, 1 and 3 are interested by a check operation to verify
if positions (0,0) are empty at the proper layer; if not empty, the ‘c 1999’ set those positions
(at those layers) empty and finally set ‘done’ the computational step. Into this code matrixes
mm0, mm1 and mm2 are linked to actual matrixes 0, 1, 3 (the internal name are completely
free).

The effect of those four recipes (OrderGenerator, while testing the program, if
totalEndUnitNumber > 0, launches those recipes at random) is the following: the recipe

 10

containing the code ‘c 1999’ cannot proceed in step 2 if does not exist the effects of one of
each of the recipes containing codes ‘c 1998’ (executed at least at step 5 or 6 or 7 deepness).

Figure xc1. The Java Swarm code … (simplified eliminating a control statement related to the consistence of the
declared number of matrixes with the internal one.

Method accepted by MemoryMatix instances are setValue, getValue, setEmpty, getEmpty
(returning true or false).

 11

Figure xc2. The Java Swarm code … (simplified eliminating a control statement related to the consistence of the
declared number of matrixes with the internal one.

NB riferimenti in ppt per Seattle; + in articolo SI per il
Mulino, soprattutto per l’articolo, non per l’how to
NB NB cambiare l’ordine dei parametri nella probe del model mettendo in fondo quelli che
intessano solo le fasi di testNB spiegare l’uso del distillere di B&B&B rispondendo a “ma
come si passano le ricette”

NB How to get jVE

