
Incomplete draft (16/11/2002), please do not quote. p.1/14

How to use jVE program (November 2002, Pietro Terna)

(jveframe-0.9.7.32.tar.gz)
appunto per 0.32 con sameStepLifoAssignment and assignEqualStepsToSameUnit: per
aggirare il fatto che un 101 s 5 101 s 5 sarebbe trattato come 101 s 10 alla stessa
unit, se assignEqualStepsToSameUnit è true, una soluzione è 101 s 5 1010 s 0 101
s 5, in cui 1010 è una unit fittizia

The description of a world with “two sides” and a consistent program

The first approach to how to use jVE (Java Virtual Enterprise), or jveframe (a frame used to
develop virtual enterprise models based on the Java version of Swarm), introduces the
existence of two independent sides in our world description and representation and, in a
consistent way, in our program.

Our simulated enterprise has both orders to accomplish – each described by a “recipe” that
contains the WD (What to Do) side or the world - and units that perform the different steps of
the production process, which represent the DW (which is Doing What) side of the same
world.

Units can be within the firm or outside. In the second case: (i) constituting other complex
enterprises or (ii) standing alone as small business actors.

It is useful to introduce here a dictionary of our terms:

• a unit is a productive structure within or outside our enterprise; a unit is able to perform
one or more of the steps required to accomplish an order;

• an order is the object representing a good to be produced; an order contains technical
information (the recipe describing the production steps) and accounting data;

• a recipe is a sequence of steps to be executed to produce a good.

Figure 1. A simplified view of the jVE components.

Incomplete draft (16/11/2002), please do not quote. p.2/14

The core of the model is the clean separation between the order and the units: WD and DW
are completely independent, in formalism and in code. So, running the model, we check the
consistency of the two sides, as in the actual world, where the output of an enterprise arises
from a complex interaction among products and production tools. As we will see above,
recipes can also describe internal parallel production paths, computational steps, batch
activities and assembly phases, where the typical procurement problems of a supply chain can
be tested (with or without just in time requirements).

A simplified view

A simplified view is that of Figure 1.
This is an introductory view of the world, with the recipes written in a simplified way; i.e., as
a sequence of steps to be executed without information about the time required by each step.
Observing the recipe 8-28-27-7 we can see that the front end (FE) of an enterprise can take in
charge the first step, which will be executed by unit 8 (in this simplified version, unit and step
numbers are coincident) within the enterprise.

Figure 2 now introduces a more dynamic interpretation of the world we are describing.

Figure 2. A dynamic view of the jVE components.

We have here three simple phases (a, b, c) in which the order containing the recipe 8-28-27-7
goes from one unit to another; in this sequence, all the needed information is contained in the
order: when the activity of a unit (as an example, unit 8) is concluded, the unit asks to the
order what is the next step to be performed and then it asks to all the units that is able to
execute that task. In this way, the order makes its journey from unit 8 to unit 28 (which is
outside the enterprise and can be considered as a simple business unit) and to unit 27 (similar
to 28). In the next step, signed with an x in Figure 2, we have a choice problem, having to unit

Incomplete draft (16/11/2002), please do not quote. p.3/14

able to perform task 7. Below we will introduce a unit criterion properly to deal with this kind
of problem in our simulation.

A remark, a little bit more abstract. One of the two units named 7 belongs to another
enterprise, so we can imagine of having to open a dialog with the front end of the other
enterprise. Anyway we have also to take in consideration the possibility of a direct link with
the unit within the other enterprise. The idea of linking together the subunits of more complex
enterprises to obtain specific productive results bring directly to the concept of virtual
enterprise as an organizational tool: as an example, look at NIIIP project (National Industrial
Information Infrastructure Protocols), which as a site at http://niiip01b.npo.org/2.

A closer look to the WD side

We told that our simulated enterprise has orders to accomplish; the orders are described by
the recipes that contains the WD (What to Do) side or the world.

Figure 3. Basic recipe.

1 In the site we can read that: “The NIIIP Consortium consists of a group of leading United States information
technology suppliers, industrial manufacturing end users, academic, and standards organizations with a common
interest in developing an information infrastructure architecture to enable organizations to operate as "Virtual
Enterprises". Virtual Enterprises are teams, consortia or alliances of companies formed to exploit business
opportunities that can not be addressed by a single organization.”
“The NIIIP Consortium is national in scope and its members bring a wealth of experience and technology to
support Virtual Enterprises. Together with the Federal Government, they share costs and skills to create the
necessary infrastructure to support Virtual Enterprises across the United States. The NIIIP Consortium has
entered into a series of cooperative agreements with the Federal Government and associated agencies to develop,
demonstrate, and prototype industrial «Virtual Enterprises».”
2 In the site we can read that: “The NIIIP Consortium consists of a group of leading United States information
technology suppliers, industrial manufacturing end users, academic, and standards organizations with a common
interest in developing an information infrastructure architecture to enable organizations to operate as "Virtual
Enterprises". Virtual Enterprises are teams, consortia or alliances of companies formed to exploit business
opportunities that can not be addressed by a single organization.”
“The NIIIP Consortium is national in scope and its members bring a wealth of experience and technology to
support Virtual Enterprises. Together with the Federal Government, they share costs and skills to create the
necessary infrastructure to support Virtual Enterprises across the United States. The NIIIP Consortium has
entered into a series of cooperative agreements with the Federal Government and associated agencies to develop,
demonstrate, and prototype industrial «Virtual Enterprises».”

Incomplete draft (16/11/2002), please do not quote. p.4/14

The basic recipe in an order is structured as shown in Figure 3.

Here we have a sequence of steps followed by a time specification and by a time quantity:
step n1 requires m1 units of time (days, hours o seconds, following ts choice). Time quantities
are integer numbers.

Obviously we have productions requiring less than one second to make a certain step, but in
these cases it is not realistic to think about processes concerning separately single pieces. A
realistic view is that of considering the production as batches of pieces. We have to kind of
batches in our world: sequential batches and stand alone batches.

A sequential batch process – as reported in Figure 4 – deals simultaneously with a lot of
orders, being one of the steps of a recipe. We have to imagine a productive process that is
separately managed for each order, but that for certain steps requires an activity referred to a
group of orders to be processed together: this is a sequential batch, formally expressed as in
Figure 4.

Figure 5. Sequential batch.

A stand alone batch process, described in Figure 6, is similar to a sequential one (we use here
“/” instead of “\”), but it is not included in a recipe with other steps: it is the only step of a
recipe describing a process considered as a black box: imagine in this case external
procurements that our enterprise is ordering in batches of a large dimension, requiring a time
delay to be accomplished. In the just in time perspective, the determination of the time point
in which to start a stand alone batch order is very important, properly due to the time delay
necessary to produce the whole bunch.

Incomplete draft (16/11/2002), please do not quote. p.5/14

Now it would be the time of introducing the procurements, which are key elements in running
the virtual enterprise, but we have to know something more about units and “end units”, so we
go to the DW side; then we will come back to WD.

Figure 6. Stand alone batch.

A closer look to the DW side

@@@The DW (which is Doing What) side of the same world is related to units and to “end
units”.

A unit is the elementary production cell able to accomplish one or more kind of step of a
recipe; steps in recipes are identified by number, as we have seen; units too express the steps
that they are able to accomplish as numbers.

Simple units, which are able to deal only with one kind of steps, are easily described using the
file unitData/unitBasicData.txt that contains the information of Figure 7.

The first line is mandatory, written exactly as is, to force the user to pay attention to the
content of the file. Then we have lines reporting: (i) the numbers of the unit (the lines can be
introduced in any order, i.e., they have not to be ordered by unit number); (ii) a flag set to 1 if
the unit can use stand alone warehouse (see below, not yet written); (iii) the specific step that
the unit is able to do (several units can be able to perform the same step); (iv) unit fixed costs
for time unit; (v) unit variable costs for time unit.

Incomplete draft (16/11/2002), please do not quote. p.6/14

Figure 7. Simple units, with: number; the flag about using or not stand alone warehouses (see below, not yet
written); their production phase, fixed and variable costs.

Complex units are able to deal with several production steps; this kind of unit is identified in
the file of figure 7 with a 0 in the production phase column. We describe them using a
spreadsheet file3, with are ## easily described using the file unitData/unitBasicData.txt that
contains the information of Figure 8.

Figure 8. Complex units ???.

Complex units have to cope the problem of setup costs

Figure 9. Complex units ???.

End units

3 We can produce the spreadsheet both via proprietary code or employing an OpenSource one, such as
OpenOffice (www.openoffice.org).

Incomplete draft (16/11/2002), please do not quote. p.7/14

Figure 10. End units ???.

To be implemented: units locking resources for other units

Warehouses

Newses

Effects of the time spent by an order in a unit

If maxTickInAUnit is set to a positive value orders waiting in a unit for more than
maxTickInAUnit the order is dropped and disappears from the simulation.

Newly back to the WD side

External (more human readable) and intermediate format of recipes (the internal one,
apparently poor in details, can be examined looking at the comments in Order.java file);
anyway we write recipes in external code; the translation mechanism from external to
intermediate code is contained in OrderDistiller class; from intermediate to internal, in Order
class

Procurements, AND; layers, to be written (AND is also not yet implemented)

Incomplete draft (16/11/2002), please do not quote. p.8/14

OR processes in WD side

We can insert an ‘or’ choice in a recipe using the format introduced in Figure za. In the
example reported here, after step 1, we can have the sequence with the two steps n2 n3 or that
with the unique n22, then the execution of the recipe continues with the step n4. The number
of branches into the or sequence has no limits.

What branch to choose into the or? We have to look at the orCriterion variable, which is set
either via the probe of the model or into the jveframe.scm file.

If orCriterion is:
== 0, all branches are executed in sequence (useful mainly for test purposes);
== 1, the first branch is chosen;
== 2, the second branch is chosen;
== 3, the choice of the branch in made randomly (a good simulated solution if we have to
balance the loading of different production subprocesses;
== 4, we choose the branch whose first step has the shortest waiting list;
== 5, we use the result of a computational step to choose the branch (see below, the
paragraphs “Computational capabilities and memory matrixes” and “Computational
capabilities and ‘OR’ sequences”).

Figure za. An ‘or’ process, with its branches (|| 1 and || 2)

An example of or sequence is the following, containing also a procurement process (see
above; … not yet written) in I one of the or branches:

10 s 3 c 1997 1 2 12 s 0 || 1 11 s 2 p 1 101 10 s 1 9 s 2

|| 2 c 1995 1 0 1 s 0 14 s 3 || 0 6 s 2

Incomplete draft (16/11/2002), please do not quote. p.9/14

where || 1 and || 2 are two nodes opening two branches of the of the 'or' sequence and || 0
concludes them; in the first branch we can identify the simple procurement sequence ‘p 1 101
10 s 1’.

The ‘or’ sequence are managed by the code of jVE in a simple way: al the steps of the
discarded branches are immediately signed as executed, then execution proceed in sequence,
avoiding those steps fictitiously executed.

Computational capabilities and memory matrixes

jVE has computational capabilities that can be associated to each step of a recipe. To use this
feature of the program it is necessary to understand Java language, as we have to modify4 the
ComputationalAssembler.java file (which inherits its default methods from the class
ComputationalAssemblerBasic). The goal of the computational capabilities is that of dealing
with forecasting, evaluations, auctions to chose procurements, …

Computations use data contained in memory matrixes created following both the
totalMemoryMatrixNumber of the model probe (this parameter, stating how many matrixes
we are creating, can also be set via the jveframe.scm file) and the contents of the file
unitData/memoryMatrixes.txt shown in Figure xa. Memory matrixes use layers in a
completely automated way; we can prevent them from using layers setting their number as
negative in each specific declaration into the file unitData/memoryMatrixes.txt. In the
example reported here, the second matrix (numbered 1, being 0 the number of the first one) in
insensitive to layers

4 We have not to modify the basic file (ComputationalAssemblerBasic.java), which is included in the src/ folder.
Instead, we have to copy in the main folder of the program, from src/, the file ComputationalAssembler.java.
The ‘make run’ command uses the classes contained in lib/jveframe.jar (which are those contained in src/), but
the classes in ./ override those in jveframe.jar.
ComputationalAssembler.java contains no method; we simply add methods, following the examples reported
below and using as a guide the full code or the methods reported in ComputationalAssemblerBasic.java. New
methods are automatically used by the che ckingComputationsAndFreeingOrders() method of
ComputationalAssembler class (which inherits it form its parent class): the tick used to convert the numerical
code of the computational steps into a recognized method reference is based upon the java reflection mechanism.
To understand the trick, looks at the following lines in ComputationalAssemblerBasic.java code:
Class c = this.getClass();
Method m = c.getMethod("c"+(-1*t),null);
m.invoke(this, null);

Incomplete draft (16/11/2002), please do not quote. p.10/14

Figure xa. Memory matrixes declarations.

Examples of recipes containing computational steps as reported in Figure xb; obviously, to
understand the meaning and the behaviour of a computation it is necessary to consider
together both the sequence of the events emerging from the various orders in execution (with
the related operations interesting the memory matrixes) and the content of the Java code of
the computational operator itself.

As seen above (… not yet written), it is important here to consider both the external (human
readable) format of the recipes and the intermediate one, always human readable, but semi-
translated. To see the internal code (apparently poor in details) you can have a look to the
comment lines in Order.java file. Code number of computational steps are accepted in the
range 1001-1999.

The format of a computation is: ‘c code n m1 … mn’ where ‘c’ is mandatory, ‘code’ is the
code of the computation, ‘n’ is the number of matrixes to be used and ‘m1 … mn’ are the
numbers of those matrixes, as reported in the file unitData/memoryMatrixes.txt (Figure xa).

Incomplete draft (16/11/2002), please do not quote. p.11/14

Figure xb. The format of the computational processes.

We introduce some recipes (Figure xb) with computations as a complete example, to explain
the dynamics of the events and the Java code related to them. To prepare other computational
tools, we have to add lines similar to those introduced below (Figure xc1 and xc2) into the
ComputationalAssembler class (ComputationalAssembler.java, as explained in the note
above).

In Figure xb we can see how computational codes are represented following their external and
intermediate formats (anyway, remember that we write recipes in external code). Pay
attention: computational codes at the intermediate format representation level are reported as
negative, following the internal convention of jVE, where all the codes related to production
steps are positive, while numbers bearing special meanings are negative.

The Java Swarm codes, extracted from ComputationalAssembler.java and reported in Figure
xc1 and xc2, interact with the recipes of Figure xb.

When an order with recipe ‘1 s 1 c 1998 1 0 5 s 2’ is executed, at the end of the two units of
time required by step 5, matrix 0 is interested by a writing operation in position (0,0) in the
proper layer (determined by the level of the order containing the recipe); if the order contains
recipe ‘1 s 1 c 1998 1 0 6 s 2’ the writing operation, at the end of step 6, concerns matrix 1 at
position (0,0) without layer, being that matrix insensitive to layers by construction; if the
order contains recipe ‘1 s 1 c 1998 1 0 7 s 2’, the writing operation, at the end of step 7,
concerns matrix 3 at position (0,0) in the proper layer, as above. In the Java code of Figure
xc1 we can see those operation made upon mm0 matrix (but we can use any name) related to
the actual matrix via the getMemoryMatrixAddress method; the setValue method set the 1.0

Incomplete draft (16/11/2002), please do not quote. p.12/14

value at (0,0). If the matrix is insensitive to layers, the layer value set in this method is
disregarded. Finally, the computational step is set as ‘done’5.

Figure xc1. The Java Swarm code … (simplified eliminating a control statement related to the consistence of the
declared number of matrixes with the internal one).

When an order with recipe ‘1 s 1 c 1999 3 0 1 3 2 s 2 3 s 2’ is executed, at the end of the two
units of time required by step 2, matrix 0, 1 and 3 are interested by a check operation to verify
if positions (0,0) are empty at the proper layer; if not empty, the ‘c 1999’ set those positions
(at those layers) empty and finally set as ‘done’6 the computational step. Into the code of this
example, matrixes mm0, mm1 and mm2 are linked to actual matrixes 0, 1, 3 (the internal
name are completely free).

The effect of those four recipes (OrderGenerator, while testing the program, if
totalEndUnitNumber > 0, launches those recipes at random) is the following: the recipe
containing the code ‘c 1999’ cannot proceed in step 2 if does not exist the effects of one of
each of the recipes containing codes ‘c 1998’ (produced when those recipes are executed at
least at step 5 or 6 or 7 deepness). When the recipe containing the code ‘c 1999’ finally
proceeds to its successive step, the effects or the “used” recipes is eliminated and must be
reviewed by other similar orders.

5 If the Java code related to a computational method does not set ‘done’ boolean variable to ‘true’ the order is not
freed and does not proceed to its successive recipe steps; the computational step will be repeated in any
simulation cycle, until ‘done’ variable becomes ‘true’.
6 See previous note.

Incomplete draft (16/11/2002), please do not quote. p.13/14

Figure xc2. The Java Swarm code … (simplified eliminating a control statement related to the consistence of the
declared number of matrixes with the internal one.

Method accepted by MemoryMatix instances are setValue, getValue, setEmpty, getEmpty
(returning true or false).

The syntax is (leave ‘layer’ as is and set the proper value of the variable as shown in the
examples):
• setValue(layer, (int) row, (int) col, (double) value) or

setValue(layer, (int) row, (int) col, (float) value)
• (float) getValue(layer, (int) row, (int) col)
• setEmpty(layer, (int) row, (int) col)
• (boolean) getEmpty(layer, (int) row, (int) col)

where the setEmpty and the getEmpty methods are useful to manage conditional situation;
obviously, to set not empty a position of a matrix, we simply put a value in it; getEmpty
returns ‘true’ if no value is found, other wise it return ‘false’.

Incomplete draft (16/11/2002), please do not quote. p.14/14

To look directly to the content of a matrix we can use the print method, as shown above in
Figure xc1; if, in the probe of the observer, the field printMatrixes is set to true, the print
method displays on the current terminal the content of the matrix; the empty position of the
matrix are reported as not available (NA).

Computational capabilities and ‘OR’ sequences

If orCriterion == 5 (se above “OR processes in WD side”) computational results are also
useful to chose what branch to execute in an or process.

We choose the branch whose number is stored in (x,0) position in the memoryMatrix
designated by orMemoryMatrix in the probe of the model or in the file jveframe.scm; the
matrix may be sensitive or insensitive to layers. Range of the branch number: from 1 to the
number of branches.

x is 0 if the first node in 'or' sequence is numbered 1; is kk if the first node is numbered 10kk
with kk 00 to 99. If orCriterion is not equal to 5, the codes 10kk are used as 1.

A computational sequence can be included in an ‘or’ branch with a great flexibility of
computational processes7.

NB riferimenti in ppt per Seattle; + in articolo SI per il Mulino, soprattutto per l’articolo,
non per l’how to
Mettere in Arial tutti i riferimenti a metodi, variabili, oggetti che si trovano nel testo
NB NB cambiare l’ordine dei parametri nella probe del model mettendo in fondo quelli che
intessano solo le fasi di test NB spiegare l’uso del distiller di B&B&B rispondendo a “ma
come si passano le ricette”

Presentare le probe dell’observer e del model

NB How to get jVE

7 This aspect is strategic for the development of jVE with the capabilities of simulating both the financial side of
the enterprise and the enterprise information system.

