
Implementation of Component-based Systems by
Systematic Refinement and Translation Steps

Christian Bunse1 and Colin Atkinson2

1Fraunhofer Institut Experimentelles Software Engineering (IESE),
Sauerwiesen 6, D-67661 Kaiserslautern, Germany

Christian.Bunse@iese.fhg.de
2Universität Kaiserslautern

Fachbereich Informatik
D-67663 Kaiserslautern, Germany

atkinson@informatik.uni-kl.de

Abstract. The component paradigm promises to address many of the productivity and quality prob-
lems currently faced by the software industry. It is hindered in doing so by the "binary-module" model
of components that prevails in contemporary component technologies as well as by the limited support
for systematically implementing UML models of higher level components. This paper describes a
technique, known as SORT, which is part of a larger method for component-based software develop-
ment, known as KobrA. KobrA is based on the development and deployment of component-based
frameworks in conjunction with a high-level, UML-based representation of components. It provides a
reasonable degree of support for implementation that is based on the concept of strictly separating
refinement steps from translation steps, and on the provision of patterns to guide the application of
these steps. The method also defines a profile of the UML, known as the Normal Object Form (NOF).
The NOF defines the appropriate level of abstraction at which refinement should end and translation
into a tool-comprehensible form should begin. In addition to the usual source code, therefore, the
implementation of a component will typically also contain refined, "implementation-level" UML class
and object diagrams to describe the "as is" implementation of the application.

1 Introduction

The widespread adoption of object technology over the past decade has brought many advantages to
the software industry, but increased quality is not normally viewed as one of them. A high propor-
tion of object-oriented systems still either fail to work correctly, or do so in a way that falls short of
certain non-functional requirements. This is of special importance in the development of compo-
nent-based system, since components are aimed at providing reusable system-parts which can be
plugged together to obtain “new” systems. Therefore the quality of a reusable component must as
high as possible.

In practice, a large proportion of defects are introduced in the mapping of the requirements spec-
ification to executable code. A typical OO project employs several different representations of the
system under development, written in various different languages and notations, and the mapping
between them is rarely if ever well-defined. The recent advent of the UML as a standard modeling
notation has had both a positive and negative impact on this problem. To the extent that it has obvi-
ated the use of different modeling notations in analysis and design it has been helpful. However, the
increased number of modeling concepts at different levels of abstraction has also complicated the
task of correctly and optimally mapping graphical object-oriented models to other object-oriented
representations such as code.

The KobrA method [1], developed at Fraunhofer IESE, applies the SORT technique [4] as its
main implementation approach. This seeks to identify and exploit the commonalities between
object-oriented notations and languages in order to minimize inter-representation mappings (i.e.
1

UML to code) and maximize intra-representation mappings (i.e. UML-to-UML). The approach is
based on two main principles: distinguishing and strictly separating refinement from translation,
and identifying a core set of object-oriented features common to all important object-orientation
representations languages. Practical packaging of the distinct translation and refinement guidelines
is achieved in a style similar to pattern catalogues [6, 8].

2 Component-based Development Methods

There are a large number of different methods to choose from when considering the use of a spe-
cific modeling notation in a software development project, with an equally large number of differ-
ent processes and modeling approaches. Despite their prima-facie differences, however, they all
share the same underlying assumption that high-level “analysis” models will be developed during
the early phases of development, and lower level executable code (i.e. the implementation) will
result from the later phases.

Obviously the developers of major methods, such as Catalysis [7], KobrA [1], and the Unified
Process [11] have faced the problem of systematically moving a model to code. Each of these meth-
ods claims to provide a holistic approach to software development, supporting the seamless devel-
opment of software systems from early analysis to executable systems. These methods are briefly
described in the following.

2.1 RUP

Coming later in the evolution of object-oriented methods, the Rational Unified Process (RUP) is
more sophisticated than either OMT or Fusion. It actually represents an amalgamation of OMT
[13], Booch [2], Objectory [9] and Rational Method [12]. The RUP has been developed to provide a
unified process to support the full power of the UML. According to [10] the process may be charac-
terized as a component-based, use-case-driven, architecture-centric, iterative, and incremental soft-
ware development method. In principle the RUP iterates over a series of cycles where a cycle
consist of four phases: Inception, Elaboration, Construction, and Transition. In addition, the process
defines various workflows, the most prominent being Requirements, Analysis, Design, Implemen-
tation, and Test, which are carried out to a specific extent in each phase of a cycle. In general the
RUP focuses more on management (e.g., workflows planning, evaluation, business modeling, etc.)
than on technical issues, and provides most support to modeling, with only a high-level add-on for
other phases of development.

The RUP uses the results of the design workflow to implement the design classes in terms of com-
ponents (e.g., as source-code files, executables, etc.). In this sense the primary goal of implementation
is to flesh out the system architecture by using UML implementation diagrams. During design, many
details of a class and its relationships are described using the syntax of the chosen programming lan-
guage which makes code generation straightforward. In particular this is enforced for operations and
attributes of a class, as well as for the relationships in which the class participates [10]. However, this
bears the danger of misusing the UML as a graphical programming language, and of invalidating mod-
els by changing the programming language. In addition, the RUP requires the ’refinement’ of abstract
constructs to constructs of the chosen programming language, but provides only abstract suggestions
for doing so. This is even true for the description of class relationships. Furthermore the impact of non-
functional requirements is considered only within the Requirements workflow, neglecting the impact
of such requirements on the modeling and implementation of a system.
2

2.2 Catalysis

The development of the Catalysis method [7] started in 1991 as a formalization of OMT but soon
also became an extension of recent OMT variants, such as Fusion. Catalysis is aimed at providing a
unified, component-based development process, by combining the strengths of the ’early’ methods
in analysis and design with a systematic treatment of refinement and architectural design. Catalysis
uses an iterative and incremental process based on cleanly defined abstraction and refinement
mechanisms. These mechanisms are applied throughout system development from early analysis to
implementation and set up the basis for recursive relationships between models, which then support
forward- and re-engineering of systems.

Catalysis views system development as a series of refinements, in which translation is regarded as a
special form of refinement. Thus, implementation continues the application of the stepwise refinement
and location principles, to systematically lower the level of abstraction to code in a high-level lan-
guage. Although this is a step in the right direction, Catalysis does not completely solve the mapping
problem. The consistent use of refinements together with well-defined relationships between repre-
sentations enable developers to express models at a level of abstraction close to code which can then be
refined (i.e., translated) to code. However, this has several potential problems. Catalysis neither
defines to what level refinement should proceed to describe all ’major’ decisions, nor the impact that
non-functional requirements may have. This may result in abstract models which are not yet imple-
mentable or models which violate the system’s quality requirements.

2.3 KobrA

The KobrA method [1] is currently being developed at Fraunhofer IESE in the context of the
KobrA-Project which is sponsored by the german ministry for research and technology (BMBF).
The goal of the KobrA method is to provide concrete support for the development and application
of component-based, domain-specific frameworks.

The central artifact of the KobrA-method is the framework (i.e., a generic description of a family
of applications which encapsulates all concrete variants). To develop a concrete application, the
generic framework is instantiated by resolving all decisions. In principle, an application removes the
genericity within a framework, but does not change the level of abstraction at which it is described.
Both, frameworks and applications are described by UML diagrams at a level of abstraction similar
to that used to describe a design. Therefore it is necessary to transform these models into a form that
can be understood by compilers. Among other things, this includes source-code in a particular lan-
guage. However, multiple implementations can be created from a given application. Each implemen-
tation can then be used to create executable images of a system.

The KobrA method makes use of a technique for implementing object-oriented models, known
as SORT [Bun01], based on the principle of distinguishing and strictly separating between refine-
ment and translation activities. To this end SORT makes use of pattern technology to support such
activities. The SORT technique is discussed in more detail in the next section.

3 The SORT Approach

The KobrA method [1] mainly uses the SORT (Systematic Object-Oriented Refinement and Trans-
lation) technique [4] for its implementation activity. SORT is based on two fundamental tenets: dis-
tinguishing and strictly separating refinement from translation, and the definition of a common,
core set of object-oriented implementation concepts to minimize the gap between object-oriented
models and programs, known as Normal Object Form or NOF [5]. The NOF defines to what level of
detail refinement proceed until translation can start by defining a set of UML modeling concepts
which correspond to the core constructs of object-oriented programming so that they can be
3

mapped into elements of a program in a manner that approximates translation (i.e without a signifi-
cant change in abstraction level). We call this set the Normal Object Form, or NOF, because in a
sense it represents a “normal” form, akin to that used in relational databases, to which UML models
must be reduced before translation can begin. When used in a systematic way, SORT can not only
improve the quality of an object-oriented system, but can also significantly increase confidence that
the desired quality levels have been attained.

In view of the success of the pattern cataloguing approaches pioneered by Gamma [8] and Bus-
chmann [6], SORT refinement and translation guidelines are packaged in a similar style. However,
there is a subtle differences between the patterns defined in SORT and those of Gamma and Bus-
chmann. Whereas the latter essentially capture good (i.e. useful) object-oriented structures/behav-
iors, SORT patterns capture good (i.e. useful) mappings between object-oriented structures/
behaviors.

Two forms of patterns are recognized in SORT: refinement patterns, which describe “good”
refinements within the UML for reaching structures at the implementation level specified by the
NOF, and translation patterns, which describe the “good” mapping of UML-NOF models to a spe-
cific object-oriented programming language (e.g., C++). The latter are similar to “idioms” [5] in
that they are language specific. However, as mentioned above they represent more of a mapping
guideline than a useful programming practice.

Of course, there is rarely a single pattern which provides the best mapping (refinement or trans-
lation) of a given structure under all circumstances. Generally, there are several potential mappings,
and the one which is most appropriate in a particular context depends on the associated non-func-
tional requirements (e.g. performance needs, space limitations, reliability etc.). Therefore patterns
have to provide a context description which allows a developer to choose the one most suitable for
his/her particular needs. Providing such information allows SORT to offer a level of context sensi-
tivity which is impossible in automated mapping tools, while at the same time still being reasonably
systematic. Developers are told precisely what to refine or translate, how to perform these refine-
ments/translations, and when to perform the relevant activity. At the same time, however, they can
tailor the particular refinements and translations in different ways that depend on the relevant con-
text factors. More detailed information on SORT and its patterns can be found in [3].

4 Summary and Conclusions

With the rapid rate of innovation in object technology, one might have expected to have seen signif-
icant improvements in the quality of component-based systems. In practice, however, this has not
happened due to the primitive techniques still largely dominating the “implementation” phase of
object-oriented development methods. The KobrA approach promises to improve this situation by
using the SORT technique to offer a practical approach to component implementation. This pro-
vides effective assistance in the mapping of UML analysis and design models to code, achieved
through the application of three time-honored strategies:
1. Reducing the size of the individual steps. A sequence of several smaller steps is easier to under-

stand than one big step. By applying SORT the task of implementing graphical models is broken
into individual refinement and translation substeps.

2. Separating concerns. Developers can concentrate on single activities and do not have to worry
about several things at once. These single steps facilitate a more systematic refinement of graph-
ical models to code-level abstractions before starting translation.

3. Identifying and exploiting commonality. SORT simplifies multiple implementations of a single
model. In general, developing a new implementation of a component requires a large amount of
effort. SORT significantly reduces this effort since a developer has “only” to retranslate the NOF
models of a component.
4

5 References

[1] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig, J. Wüst, and J. Zettel.
Component-based Product-Line Engineering with the UML, Addison-Wesley, 2001 (to appear)

[2] Grady Booch. Object Oriented Analysis and Design with Applications. Benjamin/Cummings, Redwood
City, California, 2nd edition, 1994.

[3] Christian Bunse. Pattern-Based Refinement and Translation of Object-Oriented Models to Code. PhD the-
sis, Fraunhofer IRB-Verlag, 2001. (to appear).

[4] Christian Bunse and Colin Atkinson. Improving Quality in Object-Oriented Software: Systematic Refine-
ment and Translation of Models to Code. In Proceedings of the Twelfth International Conference SOFTWARE
& SYSTEMS ENGINEERING and their APPLICATIONS (ICSSEA ’99), Paris, France, December 1999.

[5] Christian Bunse and Colin Atkinson. The Normal Object Form: Bridging the Gap from Models to Code.
In Bernhard Rumpe and Robert France, editors, Proceedings of the Second International Conference on the
Unified Modeling Language, Fort Collins, Colorado, USA, October 1999.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software Architec-
ture – A System of Patterns. John Wiley and Sons, 1996.

[7] Desmond F. D’Souza and Alan Cameron Wills. Objects, Components and Frameworks with UML: The
Catalysis Approach. Object Technology Series. Addison Wesley, October 1998.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of Reusable Object-Orient-
ed Software. Addison-Wesley, 1995.

[9] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Övergaard. Object-Oriented Software En-
gineering: A Use Case Driven Approach. Addison-Wesley Publishing Company, 1992.

[10] Ivar Jacobson, James Rumbaugh, and Grady Booch. The Unified Software Development Process. Object
Technology Series. Addison-Wesley, 1999.

[11] Philippe Kruchten. The Rational Unified Process. An Introduction. Object Technology Series. Addison-
Wesley, 1998.

[12] Philippe B. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):42–50, November 1995.

[13] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, 1991.
5

	Implementation of Component-based Systems by Systematic Refinement and Translation Steps
	Christian Bunse1 and Colin Atkinson2
	1Fraunhofer Institut Experimentelles Software Engineering (IESE), Sauerwiesen 6, D-67661 Kaisersl...
	Christian.Bunse@iese.fhg.de
	2Universität Kaiserslautern
	Fachbereich Informatik D-67663 Kaiserslautern, Germany
	atkinson@informatik.uni-kl.de
	1 Introduction
	2 Component-based Development Methods
	2.1 RUP
	2.2 Catalysis
	2.3 KobrA

	3 The SORT Approach
	4 Summary and Conclusions
	1. Reducing the size of the individual steps. A sequence of several smaller steps is easier to un...
	2. Separating concerns. Developers can concentrate on single activities and do not have to worry ...
	3. Identifying and exploiting commonality. SORT simplifies multiple implementations of a single m...

	5 References

