Transformations of UML Concurrency Constructs to E-LOTOS

Robert G Clark
Department of Computing Science and Mathematics
University of Stirling, Stirling FK9 4LA, Scotland, UK
rgc@cs.stir.ac.uk

1. Introduction

UML has now become the accepted analysis and design notation in object-oriented development [Rumbaugh et al. (1999)]. For that reason, much work is currently being done on ensuring that the semantics of UML models are precise, clear and unambiguous.

We have developed the rigorous object-oriented analysis (ROOA) method [Moreira and Clark (1996), Clark and Moreira (1999)] which integrates formal description techniques with standard object-oriented analysis methods such as OMT [Rumbaugh et al. (1991)]. As part of the ROOA method, we interpreted object-oriented analysis constructs in a formal language and provided mappings, first from OMT notation and then from UML, to LOTOS [Brinksma (1988)]. A prototype translator from UML to LOTOS has been developed [Clark (1998)].

E-LOTOS is a new version of LOTOS that is currently under development [ISO/IEC (2000)]. We have recently described mappings from the sequential aspects of UML to E-LOTOS [Clark and Moreira (2000)] and are now concerned with mapping the concurrent aspects of UML. As E-LOTOS contains a process algebra, it is well suited to specifying concurrency.

The presence of concurrency adds extra problems to the development of a system. For that reason, it is even more important than usual for significant effort to be put into the analysis and design of concurrent systems. A notation like UML is therefore of central importance in the development of concurrent object-oriented systems. However, concurrency is an area of UML where the notation is open to different interpretations. Mapping UML concurrency constructs to a formal language such as E-LOTOS helps to clarify such issues.

A general problem in design is premature implementation. Care must be taken so that the semantics of a modelling language do not go too far in mandating a particular implementation model. We identify a situation where the description of the UML concurrency semantics is expressed in terms of a particular concurrency model, thereby ruling out possible implementation in a language such as Java.

2. Concurrency in UML

In the early stages of developing a UML model, we do not need to state whether objects are active or passive and it can be useful to regard a UML model as the description of a set of communicating autonomous objects. That is the approach that we follow in ROOA. As a model is refined, explicit decisions may be made that certain objects are to be active. The intention is then that these active objects will represent concurrent behaviour in the implementation.

The difference between an active and passive object is that a passive object cannot initiate activity while an active object is defined in UML [Rumbaugh et al. (1999) page 131] to be:

“An object that owns a thread of control and can initiate control activity; ... In a sense, it (the active object) is the thread.”

By closely associating a thread with an active object, we can consider threads and concurrent behaviour from an object-oriented perspective.

We concentrate on synchronous communication as that is the approach supported by the principal object-oriented programming languages. There are basically two ways in which active objects can communicate with one another: they can communicate through an intermediate passive object or they can communicate directly with one active object calling a method offered by another active object.

3. UML concepts in E-LOTOS

E-LOTOS has a behavioural part, defined using a process algebra and a data typing part that is in the style of a functional language. We have previously described how classes, objects, aggregates, object creation and dynamic binding can be specified in E-LOTOS [Clark and Moreira (2000)].

UML is composed of a large number of different models. A use case model describes user requirements, a class diagram shows the static structure of the specification while a large number of separate sequence, collaboration and state diagrams are required to model dynamic behaviour. Our approach transforms this set of UML models into a single formal model in E-LOTOS which not only specifies the behaviour of the proposed system, but also shows its static structure. Producing a single formal model is ideal in uncovering logical inconsistencies and contradictions within the set of UML models.

We specify a class as an E-LOTOS process definition and an object as a process instance. Consider, for example, a Buffer class that offers two methods: give and take. This can be specified by the following E-LOTOS process:

process Buffer[g](id: BufferId) is
 var item: Int := 0 in
 loop
 g(!give, !id, ?item);
 (* possible actions *)
 g(!rtn_give, !id)
 []
 g(!take, !id);
 (* possible actions *)
 g(!rtn_take, !id, !item)
 endloop
 endvar
endproc (* Buffer *)

Private attributes such as item are modelled as local variables. Each object has a distinct identity and this is modelled by allocating the object a unique constant when it is instantiated. This constant, the object identifier, is defined in the data typing part as an extensible record and, in the process definition representing a class, it appears as the first parameter. Object references are modelled using object identifiers.

E-LOTOS processes communicate by synchronising on events offered at gates. We model the call, by a client object, of an operation offered by a server object by event synchronisation. Event synchronisation in E-LOTOS is symmetric; there is no concept of a client and a server. However, we model the client and server processes differently. We use a stylised structure for the events. They have the following form:

<gate name> (<operation name>, <object identifier>, <optional parameters>)

The object identifier refers to the server object. When a server object receives a call, it may need to perform various actions, possibly including calls on other objects, to carry out the required operation. We therefore model an operation as two event synchronisations. The call is modelled by an event that includes an operation name such as take, while the return is modelled by an event that includes the operation name rtn_take. Returning a value is modelled as a parameter of the rtn_take event. The corresponding client object must have consecutive take and rtn_take events, i.e. it must not carry out any actions between making the call and receiving the response.

4. Active objects
For process instances to communicate, they must be composed using E-LOTOS parallel operators to form a behaviour expression. Consider the situation where a Buffer object interacts with Producer and Consumer client objects:

(Producer[agBuffer](...) ||| Consumer[agBuffer](...))
|[agBuffer]|
Buffer[agBuffer](...)

The interleaving operator ||| means that the instances of Producer and Consumer do not communicate with one another while the parallel operator |[agBuffer]| specifies that the Producer and Consumer instances each communicate with Buffer on gate agBuffer. Our convention is that when a client object communicates with a server object of class X, the actual gate is named agX.

An active object has its own thread of control and it is straightforward to model this in E-LOTOS. When Producer and Consumer are modelled by processes representing active objects, we have a concurrent system. When a passive object such as Buffer is used within a concurrent system, it is important that it is thread-safe, i.e. that we do not have race conditions where calls of give and take may interfere with one another.

When we are developing a specification, it is important that we do not make premature decisions, but provide a specification that can be implemented in different ways depending on the circumstances in which it is to be used. Note that this is the case with our E-LOTOS specification of Buffer. In a sequential system, it can be mapped to an ordinary class offering the operations give and take. In a concurrent system, the operations can be defined in UML to have the concurrent property and the E-LOTOS specification can either be mapped to a thread-safe passive class that can be implemented as a monitor or it could be mapped to an active class that can be implemented as, for example, an Ada task. We may wish to restrict when give or take may be executed, e.g. to ensure that each item is consumed only once. That can be specified in E-LOTOS by adding guards to the give and take events.

An active object often needs to be able to respond to calls as well as initiate behaviour. According to the definition of UML [Rumbaugh et al. (1999) page 131], when operations of an active object are called they:

“should be implemented by the active object as call events”.

A call event is defined as [Rumbaugh et al. (1999) page 70]:

“a call event is the reception of a call by an object that chooses to implement an operation as a state machine transition rather than as a fixed procedure.”

The Language User Guide [Booch et al. (1999) page 314] expands on this and states that:

“ ... one active object might synchronously call an operation of another. That kind of communication has rendezvous semantics ...”

That would seem to mandate the CSP concurrency model. As the event model of E-LOTOS is based on CSP, it is straightforward to model this in E-LOTOS. However, that would seem to rule out the possibility of implementing the direct interaction of two active objects in a language that did not implement rendezvous semantics. As an example, let us consider the implementation of active objects in Java.

5. Mapping UML to E-LOTOS and Java

Java is the most widely used object-oriented language that has support for concurrency within the language. (In C++, concurrency is really part of an implementation dependent support system rather than a language feature.) It is therefore vital that there is a straightforward mapping from UML concurrency constructs to a Java implementation.

A Java program can have several concurrent threads. There is a class Thread which offers a run method and starting the execution of run initiates the execution of a new thread. Objects of class Thread would therefore seem to correspond to active objects in a UML model. Such an active class can be defined either as a subclass of class Thread or as a class that implements the Runnable interface. The difference is not important for our discussion. In both cases, we must provide a definition for the run method.
An active Java object X is active in the sense that its run method is the starting point of a thread of control. However, in all other respects, X acts as an ordinary passive object. In particular, when one of its public methods is called, that method is executed in the thread of the calling object, not in the thread of X’s run method. Determining the thread in which a method is being executed can therefore only be determined from the dynamic execution of the program; it cannot be determined from the static class diagram. It is possible to construct a multi-threaded Java program in which the concept of active object is not used. However, when modelling a concurrent system, active objects are so useful a concept that it is reasonable to want to use them in developing a multi-threaded Java program.

We can specify UML active objects in E-LOTOS in a way that is compatible with the Java interpretation. It is possible to specify the required behaviour in a UML sequence diagram indicating that there is no need to associate extra semantics with the operations in an active class, but to let UML behavioural models mandate what is meant.

6. Conclusions

Our work provides mappings from UML constructs to E-LOTOS. The ability to transform both structural and behavioural UML models into a single concurrent formal specification is of great help in identifying inconsistencies and contradictions and in ensuring that deadlock cannot occur.

Also, when the formal language supports concurrency, it can be used to explore the concurrent semantics of UML. It is important that a specification allows alternative realisations of the same behaviour. The question is then the level of abstraction at which UML should specify concurrent behaviour. We suggest that mandating a particular concurrency model for communication with an active object is going too far. In a detailed design, a particular communication strategy can be specified by interaction diagrams and by state machines.

References

[Booch et al. (1999)] Booch, G., Rumbaugh, J. and Jacobson, I.: “The Unified Modeling Language Reference Manual”; Addison Wesley, 1999.

[Brinksma (1988)] Brinksma, E.: “LOTOS – A Formal Description Technique Based on the Temporal Ordering of Observational Behaviour”; ISO 8807, 1988.

[Clark (1998)] Clark, R.G.: “Support Tool for LOTOS Translation: Prepared for the Systems Engineering Research Institute, Taejon, Korea”, Stirling University, 1998.

[Clark and Moreira (1999)] Clark, R.G. and Moreira, A.M.D.: “Formal Specifications of User Requirements”; Automated Software Engineering, 6(3) 217-232, 1999.

[Clark and Moreira (2000)] Clark, R.G. and Moreira, A.M.D.: “Use of E-LOTOS in Adding Formality to UML”; Journal of Universal Computer Science, 6(11) 1071-1087, 2000.

[ISO/IEC (2000)] ISO/IEC: “Enhancements to LOTOS (E-LOTOS)”; ISO/IEC JTC1/SC7 FDIS 15437, 2000.

[Moreira and Clark (1996)] Moreira, A.M.D. and Clark, R.G.: “Adding Rigour to Object-Oriented Analysis”; Software Engineering Journal, 11(5) 270-280, 1996.

[Rumbaugh et al. (1991)] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W.: “Object-Oriented Modeling and Design”; Prentice-Hall, 1991.
[Rumbaugh et al. (1999)] Rumbaugh, J., Jacobson, I. and Booch, G.: “The Unified Modeling Language Reference Manual”; Addison Wesley, 1999.

1
3

