
Refining Catalysis’ action types using UML

transformations (position paper)

Noël Plouzeau and Gerson Sunyé
IRISA

Campus de Beaulieu, F-35042 Rennes Cedex, France
email: [plouzeau, sunye]@irisa.fr

January 2001

Abstract

In this position paper we briefly expose issues of an ongoing work
about the Catalysis methodology. We aim at providing an UML support
to the refinement aspects of this methodology. To this aim we study how
elementary refinement operations on actions type could be modeled using
some UML model transformations.

1 Introduction

Catalysis [1] is a software development method that emphasizes on building pre-
cise and abstract models, while maintaining realistic design issues (e.g. perfor-
mance or reutilisability). The Catalysis rationale includes a powerful refinement
process which insists on transformation traceability and testing. We are inter-
ested in providing full support for Catalysis in our UML tool and its underlying
transformation framework [2].

2 Catalysis in (very) short

In Catalysis, Types and Actions are represented in the same abstraction level.
In short, a Type defines a state function, composed by attributes and internal
operations that read and change this state. Actions describe interactions among
objects. They hide the internal details of interaction and, most of time, rely
on the definition of pre and post conditions, which could be seen as a set of
interaction objects.

What is a refinement The Catalysis concept of refinement has quite a gen-
eral meaning: a refinement is a general transformation of a model. The purpose
of a transformation is not predetermined by the use of the “refinement” term.

1



Refining a model is not necessarily adding details to an abstract model. A
model construction process aims at building a set of models that cover view-
points for the user requirements issues upto the implementor choices. To build
this set of models, one usually starts with some abstract models of user require-
ments which give precise informations about the relevant concepts of the user
world and of the user perception of the system being modeled.

Through model refinements, models are transformed in several ways to add
details but also to match design issues. Hence for instance a set of concepts from
a model M1 are transformed into another set to give model M2, in order to deal
with design issues that are brought by the application context (performance,
interoperability, legacy). An important point is to show that elements of M2

can be traced back to M1’s ones. This traceability is done by providing a third
model which expresses M1 elements with M2’s ones. This third model is built
using several constructs among others retrieval functions which give definitions
of attributes in M1 using M2 concepts.

Basic kinds of abstraction and refinement Object types and action types
are fundamental concepts in Catalysis; these concepts are on an equal foot with
respect to refinement. While the object type notion is extremely common in
oo methodologies, the action type one is not so commonly found in those. An
action in Catalysis is an abstraction for a set of interactions between a set
of objects. For instance, an action between a customer and a retailer models a
sale transaction, specifying only the net effects and not the intermediate steps of
interaction between a customer and a retailer. Object and action types are both
refinable; the Catalysis method identifies four kinds of abstraction/refinement
relationships (see [1], §6 for details)

Operation An operation abstraction defines the effects of an operation execu-
tion in lieu of giving the internal details of its execution. The effects are
typically defined with pre/post conditions.

Model A model abstraction simplifies the state view of an object by providing
a simpler set of abstract attributes than the refined object. By simpler we
mean substituting design types with more abstract types, e.g. replacing
an index of a relational database with a sorted collection type (sequence).

Action An action abstraction hides the details of interaction between objects
by providing only definition of initial states and final states reached after
the action occurrence.

Object An object abstraction replaces a set of object with a single object, a bit
like the Facade design pattern: the internal state of the object is hidden

An example In order to explain the different kinds of abstraction/refinement,
we’ll use the simple example below. Because of the lack of space, we’ll focus on
the action refinement only.

2



First basic model Our first model describes the world of finance as seen by
a simple ATM user.

model M 1
type User

walletAmount : Currency −− What the user has got in her pocket
account : BankAccount −− Her bank account

end

type ATM
cashAmount : Currency −− What remains in the machine

end

−− The getMoney action describes a standard ATM transaction
action (u:User,a:ATM)::getMoney(amount:Currency)

pre : u.account.balance > amount
pre : a.cashAmount >= amount
post : u.account.balance = u.account.balance − amount
post : a.cashAmount = a.cashAmount −amount
post : u.walletAmount = u.walletAmount@pre + amount

end model M 1

Transforming the M1 model to refine the getMoney transaction Now
our user wants to know what actions are really performed when the getTrans-
action occurs, i.e. what are occurrence details of the getMoney action. We then
refine getMoney into several actions. In our example these actions occur rather
sequentially, but this is not always the case.

model M 2

action (u:User,a:Atm)::proveIdentity(card:ATMCard,code:Integer)
post : a.validCard −− Models the fact that the ATM has

−− recognized this card

action (u:User,a:Atm)::requestMoney(amount:Currency)
pre : a.validCard
post : if (u.account.balance >= amount) and a.cashAmount >= amount

then a.amountToGive = amount

action (u:User,a:Atm)::getCash()
pre : a.amountToGive > 0

post : u.account.balance = u.account.balance − a.amountToGive
post : a.cashAmount = a.cashAmount − a.amountToGive
post : u.walletAmount = u.walletAmount@pre + amount

end model M 2

We now have two models, and we want to bind them to show that M2 is a
refinement of M1. Since in this paper we deal with action refinement only, we’ll
focus on Catalysis means to show the relationships between an action a and the

3



actions produced by a’s refinement. The Catalysis book show how one can use
action reification to help in the refinement process of actions [1], §6.5.

3 Using UML

We now address the issue of Catalysis action refinement representation in stan-
dard UML [3]. But before modeling refinements themselves, we must find out
how Catalysis action types can be modeled in UML.

1. The UML Action concept is related to state changes in an object: an UML
action is executed when a stimulus is (bound to this action) is received.
This action notion is completely different from the one we need.

2. The UML also defines the Collaboration concept which aims in describing
interactions among objects. Using Collaboration to model Catalysis action
seems to be a possibility.

3. The UML Use Case concept bears similarities with the concept of Action
in Catalysis. An Use Case connects several participants, is extensible, and
therefore is a good candidate to represent refinements.

However, Use Cases are not perfectly equivalent to Catalysis Actions for
several reasons, discussed in the next section.

Get MoneyGet Money

Provide Id

Get Cash

Request Money
<<include>>

<<include>>

<<include>>

<<refine>>

Figure 1: Use Case Refinement

3.1 UML use cases vs Catalysis actions

UML Use Cases emphasizes on several points that are somehow incompatible
with Catalysis Actions. For instance:

1. Use Cases deal with interactions between some “central” object and its
environment, which includes actors. On the contrary, Catalysis actions
give symetric roles to its participants.

4



2. Use Cases are modeling tools because they each specify a set of interaction
sequences (use case instances) between actors and the system. This is not
as flexible and precise a specification tool as Catalysis’ pre/post conditions
on actions.

However, we can try to model Catalysis actions as a Use Case, since the
pre/post conditions of an action can be specified by adding constraints to it (in
UML metamodel, a Use Case is a ModelElement and thus may have constraints).

4 Action refinement through UML transforma-
tions

Usefulness of such transformations Once an action is specified with the
UML construct above, we have to focus on how we can transform our M1 model
into M2 and store this transformation for documentation purposes and also to
help in defining the retrieval model.

How to represent these transformations in UML The basic transfor-
mation that we do here is the decomposition of an action: the getMoney action
is refined into a set of 4 actions (see Fig. 2). In UML, this transformation is
represented by a Dependency (stereotyped “refine”) between two Use Cases.

Beyond the representation Catalysis refinements can be easily represented
by UML Dependencies. However, we want to go beyond this representation and
explicitly describe how the properties of an element are mapped to the refined
version of this same element.

We are particularly interested in the representation of such a mapping. In our
example, we can notice that a single constraint was split into three others. We
can not, however, explicitly describe this mapping, neither verify the behavior
equivalence between the initial constraint and the new ones.

Get MoneyGet Money

Provide Id

Get Cash

Request Money
<<include>>

<<include>>

<<include>>

<<refine>>

Figure 2: Use Case Refinement

5



5 Conclusion

In this paper we have pointed out some issues dealing with modeling some
aspects of Catalysis through UML model transformations. We believe that
such transformations are interesting features to support the refinement Catalysis
methodology. Beyond the action refinement mentioned in this paper, we are
looking at modeling all four kinds of refinement operations of Catalysis. In
many practical cases, useful refinement steps involve two elementary refinement
steps, e.g. action refinement with object refinement: new actions are dispatched
between cooperating sub-objects.

References

[1] Desmond D’Souza and Alan Wills. Objects, Components and Frameworks
With UML: The Catalysis Approach. Addison-Wesley, 1998.

[2] Jean-Marc Jézéquel, Wai Ming Ho, Alain Le Guennec, and François Pen-
naneac’h. UMLAUT: an extendible UML transformation framework. In
Robert J. Hall and Ernst Tyugu, editors, Proc. of the 14th IEEE Inter-
national Conference on Automated Software Engineering, ASE’99. IEEE,
1999.

[3] UML RTF. OMG Unified Modeling Language Specification, Version 1.3,
UML RTF proposed final revision. OMG, June 1999.

6


	1 Introduction
	2 Catalysis in (very)
short
	3 Using UML
	3.1 UML use cases vs Catalysis actions

	4 Action refinement through UML transformations
	5 Conclusion

