
1

Minimizing the Impact of Adding a Formal Method to the UML

 Colin J. Neill
 Penn State Great Valley
 Malvern, PA 19355 USA
 cjn6@psu.edu

ABSTRACT
Formal methods have been available to software developers
for over 20 years, but have never elicited a significant
industrial following. It is well understood, however, that the
earlier in the development process the ambiguities and
abstract concepts of requirements are translated into
unambiguous and concrete constructs the better in terms of
software correctness, testing and maintenance. It is also
well understood that formal specification methods are
intractable and extremely time consuming - hence their lack
of use.

This paper describes a possible solution to this conundrum -
a hidden formal layer to the UML.

The UML has rapidly become the de facto standard for
application development so makes a natural choice as a
host language. By mapping elements from the behavioral
views of the UML – interaction, activity and statechart
diagrams – into a formal method the need to learn that
method is removed. The formal method used is the Q-
model. This is a mathematically-based computational
model used primarily in the design of time-critical systems
and includes support for sophisticated temporal analysis of
single atomic tasks (methods), pairs of communicating
tasks (coupled objects) and complex communicating groups
(collaborations).

1 INTRODUCTION
Formal methods provide precise and verifiable software
specifications and have been shown to produce correct
software that is maintainable and meets customer
requirements [4]. Furthermore, these surveys demonstrate
that, contrary to popular myth, such projects come in on
time and within budget [2]. Given that this summarizes all
of the aims of software engineering, it is disappointing, but
not surprising, that only a small proportion of software
projects use rigorous formalisms [3].

The alternative is to use informal, graphical modeling
techniques that provide a relatively simple and abstract
representation using easy to learn notations. The obvious
advantage of these is that they can offer a means of
communication between developers and clients, and
therefore a tool for requirements elicitation – no small
reward in itself. The unfortunate side-effect of such
abstractions is ambiguity. This limits precision and hinders
the translation of the specification into code [14].

Of course, it is the need to understand discrete mathematics
that has deterred large scale use. It can be argued that it is
desirable that software engineers understand formal
techniques, but that is not the reality. The Unified Modeling
Language (UML), for example, is a graphical modeling
language that currently contains many semantic
inconsistencies, not least the omission of any formal
semantics of diagram combinations [7][6] yet is widely
regarded as the de facto standard for object-oriented
software development.

The solution to this impasse is to translate the less formal
specifications into formal models. This paper presents the
early stages of an attempt at this for the special case of real-
time systems specification.

2 TIME AND THE UML
A real-time system is one in which the time a result is
produced is as critical as the result itself.. The over-riding
characteristic of a real-time system is that its responses to
the environment should be deterministic [13].

This imposes a set of requirements upon any technique
used in the specification of real-time systems to ensure that
the temporal performance required is achieved. Of these
requirements, the need for non-trivial representations of
time, and the ability to formally verify performance using
those representations are paramount. Many current
approaches to real-time system development, including the
current version of the UML and several formal methods,
fail on one or both of these needs [11].

While not aimed specifically at real-time system design,
some notion of time has been included in the UML and at
least two of its primary authors have proposed approaches
for real-time system development [1][8]

Of the two methodologists, Jacobson has been the most
descriptive in terms of the handling of real-time issues –
indicative of his background in telecommunication systems.
The approach suggested in Jacobson’s earlier work [8] is to
document time constraints by associating time attributes to
event sequences in the use cases of a system. As the
development progresses these requirements are transferred
into sequence diagrams and finally on to the relevant
objects. The total time required for each object to complete
its tasks is checked to be less than or equal to the time
associated to the use case sequence.

 2

Douglass [5] has built substantially on Jacobson’s
approach, providing a detailed description of the issues
involved in embedded system development as well as
considerable discussion on how to pictorially represent the
intentions of the developer with the UML notation. The
crucial rigorous proof is still missing, however.

A formalism that does meet the requirements of real-time
systems is the Q-model.

3 THE Q-MODEL
The Q-model was originally developed by Quirk and
Gilbert at the U.K Atomic Energy Research Establishment
in 1977 [12] and was intended as a formal method for the
description of temporal characteristics of complex real-time
systems. Motus [9][10] saw that Quirk’s ideas offered a
basis for the production of reliable, efficient and cost-
effective code and set about the development of a prototype
computer-based tool to aid in the design of time-dependent
software.

The Q-model is based upon the concept that an embedded
computer system is composed of a set of loosely-coupled,
repeatedly-activated, terminating processes.

Processes
A process (p) is a mapping from its domain of definition
(dom p) onto its value range (val p)

p: dom p → val p.

This is still not particularly useful, though, in terms of the
temporal performance of a system. In a real-time system
the assumption is that the timewise correctness of events
and data is critical. Quirk and Gilbert solved this by
describing the process start times explicitly, as part of the
process definition, thus:

p: T(p) x dom p → val p,

where T(p) is the set of all start times for process p, termed
the process timeset.

Each process in the Q-model must have a timeset which
indicates each time instant that that process will activate. In
theory these timesets can all be independent, and can be
expressed in a number of ways:

1. Explicitly listing the time instances of each activation.

{ }T(p t t t ti n) , , ,...= 0 1 2

2. Specify the first time instance (t0) and the interval
between each successive instance (ta).

{ }T(p t t t nti n a) := = +0

3. Specify a triggering event in the environment whose
occurrence activates the process. (To allow analysis of
behavioral properties it is necessary to estimate the
interval between successive occurrences of this event –
the period of the event).

{ }T(p t t t nei n) : ()= =

where t(ne) is the n-th occurrence of the triggering event e.

4. Link the timeset to the timeset of another process, via a
channel.

By specifying the activation times for each process, the
output data from a process can be automatically
timestamped, relative to the first start instant of that
process. In this way a sequence of data generations can be
identified by the time at which they were produced, and this
allows the data-consuming process to reason over the
validity of the incoming data. This is of particular
importance in embedded systems, where the latest
generation of data is not necessarily the most appropriate.
This is referred to as time-selective communication.

Channels
As mentioned above, process timesets can be linked via
channels. Several types of channel have been defined in
terms of the effect they have on those timesets. A
discussion on these various types is beyond the scope of
this paper and interested parties are directed to the work of
Motus and Rodd [10]. Suffice to say that these channel
types support synchronous communication – where the
timesets of the producer-consumer pair are identical,
sequential communication – where the consumer process’
timeset is generated by the producer process and truly
asynchronous communication – where the two timesets are
independent.

Returning to the formal definitions, a channel (σij) can be
considered as a mapping of the producer-process (p i) value
range onto the consumer-process (p j) domain of definition,
thus:

σ ij i:) val p x T(p x T(p) proj dom pi j val p ji
→

An important feature of this mapping is the inclusion of the
producer processes’ timeset. This provides the consumer
process access to the history of the data generated by the
producer – required for time-selectivity.

It is then possible to define a channel function that
describes the range of data generations that the consumer
process requires. Thus, a channel function K(σij, t) defines
for each t ∈ T(pj), a subset of T(p i)

K t T(p T(pij i j(,)),).σ ⊂ ∈ t

Therefore, the consumer process pj, activated at t ∈ T(pj),
only has access to the data generated by the producer
process pi, whose computations were activated at
t ∈ K(σij, t). [10]

This seems unwieldy, but channel functions are, in fact,
relatively simple to specify. Using relative backward time,
the channel function becomes the interval between the
oldest data generation required and the newest generation

 3

required (where the present is 0, the previous generation is
–1 and the next generation is +1.)

Analysis
The most powerful aspect of the Q-model, in terms of its
application to real-time system specification, is the ability
to perform temporal analysis of the system model. This
analysis relies upon a set of parameters that must be
defined, coupled with the above formal definitions for the
processes and channels.

Analysis can be performed in two stages: formally, by
applying a comprehensive set of rules and informally,
through simulation.

Formal analysis
There are three levels of analysis to the Q-model. The
simplest is the checking of individual process
specifications. Once all the necessary parameters, timesets
and channel functions have been provided the second level
of analysis can be performed.

This is concerned with process-pair interactions – checking
the consistency of any imposed time constraints and
determining the achievable timing characteristics given the
specified parameters and channel types.

The final stage of analysis is concerned with process group
behavior. It is here that information deadlocks (“circular”
message-waiting conditions) are checked for in sequential
chains and synchronous loops, message transfer paths are
analyzed, and the time required for data to pass through
each path is calculated to verify the time constraints
imposed upon the designed system by the environment.

Simulation
In addition to the formal verification, informal analysis can
be performed. This is desirable because the formal checks
can only verify that the proposed model does not violate the
limited number of rules regarding the non-contradiction of
process parameters and correct interprocess
communication, but does not provide any insight to
whether the model will perform as intended in the initial
specification. The informal analysis can do this, however,
by allowing the designer to animate the model as a
simulation scenario and view the results as a time-line
diagram.

This type of simulation provides the developer with a
graphic representation of the dynamic operation of the
model, showing when and how processes are activated and
what data, and in particular what age of data, each process
is consuming. The designer is then able to validate that the
proposed system will behave as intended in the
specification, at least temporally!

4 MAPPING THE UML INTO Q-MODELS
The central feature of the work presented here is that the
user is not confronted with a new formal model of a
system, thus avoiding the recurring problem of esoteric and
intractable representations that software engineers avoid.

To achieve this the comfortable, graphical models
constructed in the UML must be translated into Q-models.
The following sections will describe these translations, but
at present these are themselves informal and the
determination of formal translation rules is the current
focus of the research.

Use cases
The UML is intended for use within a use-case driven
development process. The use cases are, therefore, the first
artifacts to be established. Initially these are abstract and
high-level, but through iteration become detailed
descriptions of interaction dialogues between the system
and its environment. In real-time systems the temporal
constraints are imposed by the environment. These can be
expressed in the use cases as required response times of the
system, and expected arrival rates of input data.

In the Q-model and abstract process is created to represent
the use case behavior, with the parameters serving as the
process (use case) timeset. As subsequent diagrams in the
UML design are developed the use case will come to
represent the collaboration of several objects. As this
happens, the abstract Q-model process becomes a
community of collaborating processes, with each process
belonging to only one of the objects (representing the
object method). Analysis of the Q-model can be performed
at any time (once the parameters are defined) to ensure that
as the use case is elaborated, the original constraints are
still met.

The normal process of discovering the collaborating objects
is preserved. That is, textual analysis, domain knowledge,
preliminary study or business modeling resulting in classes
and relationships as usual.

Interaction diagrams
In most texts on the UML, the use cases are expanded upon
using sequence diagrams. Douglass [5] has shown how
simple temporal parameters can be expressed on sequence
diagrams. Typically these are maximum allowable response
times and periods for iterative messages. By extending the
syntax to support interval-based parameters it is possible to
temporally describe every message. Those messages that
are non-deterministic (i.e represent unknown causal
relations) are given sufficiently large intervals.

A Q-model process is created for each unique message call,
as these represent invocations of object methods, and their
timesets determined from the defined intervals for that
message and any subsequent copies of that message –
further invocations. At this time it is necessary to define an
interval for each process which is started at each activation
and during which additional activation requests are denied.
This is termed the equivalence interval.

The presence of a message in the interaction diagram
indicates that a link between two objects must exist in the
class, object and collaboration models. This link is
represented in the Q-model as a channel between the

 4

calling and called methods (processes). The channel type is
not always known at this point since this relates to control
flow rather than data flow, but as a general rule, if control
is passed to the called method, the channel is sequential,
whereas if both the calling and called methods are
operating concurrently, the channel is synchronous.

Statechart diagrams
Statechart diagrams are used in the UML to model the
internal state behavior of objects. Vain [15] demonstrated
that the Q-model technique can be used to model state
behavior in a similar way to Petri nets by considering Q-
model processes as states. This is inconsistent with their
use in this example, however. Instead, it is necessary to
consider the actions and activities shown in the statecharts.
These should, of course, equate to the object methods for
the class being described. Since these methods are the Q-
model processes discovered by mapping the method calls in
the sequence diagrams, the additional information from the
statecharts relates to the conditions or events that invoke
those calls.

It was stated previously that the activation of a process is
defined by its timeset, and that a process’ timeset can be
linked to that of another process via a synchronous or
sequential channel or specified directly. The Q-model
therefore describes external events as processes with a
timeset representative of the event (the period of the event
or a suitable distribution). Since internal events are raised
by other objects within the model these are modeled by
connecting those processes raising the event to the
processes reacting to the event via channels. If the object
(and object method) responsible for raising an internal
event is not indicated on the current statechart all other
statechart and activity diagrams are interrogated to reveal
the source of the event – usually denoted by a «send» event
or «signal». If it is not indicated on any diagram it
represents a gap in the specification.

Conditional branching must be modeled with an additional
element, however, since the exe cution path is dependent on
the condition. This element is the selector process. Selector
processes behave exactly as common processes except that
they allow the selection of either an input channel, an
output channel, or both the input and output channels of the
process. That is, in the case of an output selector process,
say, at each activation the output path is determined and
data is only produced to that channel. This selection is done
in a purely probabilistic manner (by defining the
probability, or distribution, for each channel), but allows
for the representation of such decision-making and
simulation of the model.

Activity diagrams
The final diagram relevant to the construction of the Q-
models is the activity diagram. These are used in the UML
to describe the flow of control between objects in a
collaboration and, optionally, the creation, modification,
use and destruction of other objects.

Activity diagrams can be used to elaborate on use cases in
place of sequence diagrams. In this case, activities translate
to the Q-model processes as for statechart diagrams.
Transitions in the activity diagram correspond to sequential
channels unless concurrent activities are communicating in
which case they are synchronous channels. Of course
transitions are not a representation of data flow, only
control flow, so the channels have no channel functions and
are thus referred to as null channels. The data flow
information is determined from subsequent interaction
diagrams. As in statecharts, conditional branching is
represented by selector processes.

Filling in the gaps
It is clear from the above discussion that the existing
diagrams in the UML do not contain all of the information
necessary to construct a formal model. For the most part,
the structure of the Q-model can be translated directly as
described. The missing elements are the time parameters,
timesets, channel types and channel functions.

The extensions to the UML notation proposed by Douglass
[5], with the addition of interval-based parameters, provide
most of the missing parameters and timeset information.
Where that information is not available the user must
provide it. At present this requires an understanding of the
Q-model description, but in the future the user will
complete a data form for each process and channel, where
they must fill in the missing parameters (execution time
intervals, data production rates, periods and data validity
times, etc.) If these are not known, intervals can be
estimated and their effect may be seen during analysis. This
is also the case for channel types and functions; alternatives
can be explored during Q-model analysis and chosen
accordingly.

5 CONCLUSIONS
This paper has described a framework for the translation of
UML behavior models into Q-models – a formal method
for the specification, analysis and verification of real-time
systems. This translation avoids the need for training in a
new approach and the fear and skepticism often associated
with formal specification methods. It must be stressed,
however, that this approach does not allow for a lack of
understanding of the systems under development. A
thorough knowledge of the requirements and constraints of
time-critical systems is fundamental.

The primary advantage of this approach is that users can
continue to develop software intensive systems using the
familiar and comfortable graphical notation of the UML
and then formally analyze and verify those models with a
rigorous, proven method. Gaps within the specification
become obvious and a thorough investigation of the
requirements and constraints is forced by the need to
specify temporal parameters throughout. Analysis can then
identify possible problems in the specification such as
deadlock or missed deadlines before costly implementation.

The work presented here is only in the early stages,

 5

however. Unresolved issues include the mapping of deeply
nested statecharts where the timesets of repeatedly executed
processes become extremely complex as the number of
possible paths increases, and the resolution of conflicts
between different UML diagrams describing the same
behavior (such as a sequence diagram and an activity
diagram of the same use case). At present both situations
require decisions based upon an understanding of the
resultant Q-models, but it is hoped that a possible remedy is
the use of heuristics or design patterns which can be
encapsulated within the translation rules.

REFERENCES
1. Booch, G., Object-oriented Design with Applications,

Benjamin Cummings, Redwood City, CA, 1991.

2. Bowen, J. and Hinchey, M. Ten commandments of
formal methods. Computer, Vol.28, No.4, pp. 56-63,
April 1995.

3. Bowen, J., Stavridou, V., Woodcock, J.C.P. and
Larsen, P.G. The industrial take up of formal methods
in safety-critical and other areas: A perspective. In
Proceedings First International Symposium of Formal
Methods Europe (FME’93). Springer-Verlag, Berlin,
Germany. pp. 183-95; 1993

4. Craigen, D., Gerhart, S. and Ralston, T. An
international survey of industrial applications of formal
methods, Atomic Energy Control Board of Canada, US
National Institute of Standards ands Technology, and
US Naval Research laboratories, NIST GCR 93/626,
National Technical Information Service, 5285 Port
Royal Road, Springfield, VA 22161, USA, 1993.

5. Douglass, B.P. Real time UML – Developing Efficient
Objects for Embedded Systems. Addison Wesley,
1998.

6. Evans, A.S. and Wellings, A.J. UML and the formal
development of safety-critical real-time systems . IEE
Colloquium. Applicable Modeling, Verification and
Analysis Techniques for Real-Time Systems, IEE,
London, UK. pp. 2/1-4, 1999.

7. Graw, G., Herrmann, P. and Krumm, H. Verification
of UML-based real-time system designs by means of
cTLA. In Proceedings 3rd IEEE International
Symposium on Object-oriented Real-time Distributed
Computing (ISORC 2000), IEEE Computer Society
Press, 2000, pp. 86-95.

8. Jacobson, I., Christerson, M., Jonsson, P. and
Overgaard, G. Object-oriented Software Engineering:
A Use Case driven Approach. Addison-Wesley,
Wokingham, 1992.

9. Motus, L. and Kaaramees, K. A model based design of
distributed computer control system software. In
Proceedings 4th IFAC Workshop on Distributed
Computer Control Systems, Pergamon, Oxford, pp. 93-
101, 1983.

10. Motus, L. and Rodd, M.G. Timing Analysis of Real-
time Software, Pergamon, Oxford, 1994.

11. Neill, C.J. A Method for the Design of Complex Real-
time Systems, Ph.D. thesis, University of Wales, 1997.

12. Quirk, W.J. and Gilbert, R. The Formal Specification
of the Requirements of Complex Real-time Systems,
Atomic Energy Research Establishment, Harwell,
U.K., No. 8602, 1977.

13. Rodd, M.G. and Verbruggen, H.B. Expert systems in
advanced control – myths, legends and realities. In
Proceedings 17th Annual Advanced Control
Conference, Purdue University, Indiana, pp. 1-14,
1991.

14. Soon-Kyeong Kim and Carrington, D. Visualization of
formal specifications. In Proceedings Sixth Asia
Pacific Software Engineering Conference (ASPEC'99).
IEEE Computer. Society Press, Los Alamitos, CA,
USA. pp. 102-9, 1999.

15. Vain, J. Comparison of the Q-model and Petri nets
using modeling power. Proceedings Estonian Academy
of Sciences, series of Math., Phys., and Techn., Vol.
36, No. 3, pp. 324-333, 1987.

