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ABSTRACT 
Formal methods have been available to software developers 
for over 20 years, but have never elicited a significant 
industrial following. It is well understood, however, that the 
earlier in the development process the ambiguities and 
abstract concepts of requirements are translated into 
unambiguous and concrete constructs the better in terms of 
software correctness, testing and maintenance. It is also 
well understood that formal specification methods are 
intractable and extremely time consuming - hence their lack 
of use. 

This paper describes a possible solution to this conundrum - 
a hidden formal layer to the UML.  

The UML has rapidly become the de facto standard for 
application development so makes a natural choice as a 
host language. By mapping elements from the behavioral 
views of the UML – interaction, activity and statechart 
diagrams – into a formal method the need to learn that 
method is removed. The formal method used is the Q-
model. This is a mathematically-based computational 
model used primarily in the design of time-critical systems 
and includes support for sophisticated temporal analysis of 
single atomic tasks (methods), pairs of communicating 
tasks (coupled objects) and complex communicating groups 
(collaborations). 

1 INTRODUCTION 
Formal methods provide precise and verifiable software 
specifications and have been shown to produce correct 
software that is maintainable and meets customer 
requirements [4]. Furthermore, these surveys demonstrate 
that, contrary to popular myth, such projects come in on 
time and within budget [2]. Given that this summarizes all 
of the aims of software engineering, it is disappointing, but 
not surprising, that only a small proportion of software 
projects use rigorous formalisms [3].  

The alternative is to use informal, graphical modeling 
techniques that provide a relatively simple and abstract 
representation using easy to learn notations. The obvious 
advantage of these is that they can offer a means of 
communication between developers and clients, and 
therefore a tool for requirements elicitation – no small 
reward in itself. The unfortunate side-effect of such 
abstractions is ambiguity. This limits precision and hinders 
the translation of the specification into code [14]. 

Of course, it is the need to understand discrete mathematics 
that has deterred large scale use. It can be argued that it is 
desirable that software engineers understand formal 
techniques, but that is not the reality. The Unified Modeling 
Language (UML), for example, is a graphical modeling 
language that currently contains many semantic 
inconsistencies, not least the omission of any  formal 
semantics of diagram combinations [7][6] yet is widely 
regarded as the de facto standard for object-oriented 
software development. 

The solution to this impasse is to translate the less formal 
specifications into formal models. This paper presents the 
early stages of an attempt at this for the special case of real-
time systems specification. 

2 TIME AND THE UML 
A real-time system is one in which the time a result is 
produced is as critical as the result itself.. The over-riding 
characteristic of a real-time system is that its responses to 
the environment should be deterministic [13]. 

This imposes a set of requirements upon any technique 
used in the specification of real-time systems to ensure that 
the temporal performance required is achieved. Of these 
requirements, the need for non-trivial representations of 
time, and the ability to formally verify performance using 
those representations are paramount. Many current 
approaches to real-time system development, including the 
current version of the UML and several formal methods, 
fail on one or both of these needs [11].  

While not aimed specifically at real-time system design, 
some notion of time has been included in the UML and at 
least two of its primary authors have proposed approaches 
for real-time system development [1][8] 

Of the two methodologists, Jacobson has been the most 
descriptive in terms of the handling of real-time issues – 
indicative of his background in telecommunication systems. 
The approach suggested in Jacobson’s earlier work [8] is to 
document time constraints by associating time attributes to 
event sequences in the use cases of a system. As the 
development progresses these requirements are transferred 
into sequence diagrams and finally on to the relevant 
objects. The total time required for each object to complete 
its tasks is checked to be less than or equal to the time 
associated to the use case sequence. 
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Douglass [5] has built substantially on Jacobson’s 
approach, providing a detailed description of the issues 
involved in embedded system development as well as 
considerable discussion on how to pictorially represent the 
intentions of the developer with the UML notation. The 
crucial rigorous proof is still missing, however. 

A formalism that does meet the requirements of real-time 
systems is the Q-model. 

3 THE Q-MODEL 
The Q-model was originally developed by Quirk and 
Gilbert at the U.K Atomic Energy Research Establishment 
in 1977 [12] and was intended as a formal method for the 
description of temporal characteristics of complex real-time 
systems. Motus [9][10] saw that Quirk’s ideas offered a 
basis for the production of reliable, efficient and cost-
effective code and set about the development of a prototype 
computer-based tool to aid in the design of time-dependent 
software.  

The Q-model is based upon the concept that an embedded 
computer system is composed of a set of loosely-coupled, 
repeatedly-activated, terminating processes. 

Processes 
A process (p) is a mapping from its domain of definition 
(dom p) onto its value range ( val p) 

p: dom p → val p. 

This is still not particularly useful, though, in terms of the 
temporal performance of a system. In a real-time system 
the assumption is that the timewise correctness of events 
and data is critical. Quirk and Gilbert solved this by 
describing the process start times explicitly, as part of the 
process definition, thus: 

p: T(p) x dom p → val p, 

where T(p) is the set of all start times for process p, termed 
the process timeset. 

Each process in the Q-model must have a timeset which 
indicates each time instant that that process will activate. In 
theory these timesets can all be independent, and can be 
expressed in a number of ways: 

1. Explicitly listing the time instances of each activation. 

{ }T(p t t t ti n) , , ,...= 0 1 2  

2. Specify the first time instance (t0) and the interval 
between each successive instance (ta). 

{ }T(p t t t nti n a) := = +0  

3. Specify a triggering event in the environment whose 
occurrence activates the process. (To allow analysis of 
behavioral properties it is necessary to estimate the 
interval between successive occurrences of this event – 
the period of the event). 

{ }T(p t t t nei n) : ( )= =  

where t(ne) is the n-th occurrence of the triggering event e. 

4. Link the timeset to the timeset of another process, via a 
channel. 

By specifying the activation times for each process, the 
output data from a process can be automatically 
timestamped, relative to the first start instant of that 
process. In this way a sequence of data generations can be 
identified by the time at which they were produced, and this 
allows the data-consuming process to reason over the 
validity of the incoming data. This is of particular 
importance in embedded systems, where the latest 
generation of data is not necessarily the most appropriate. 
This is referred to as time-selective communication. 

Channels 
As mentioned above, process timesets can be linked via 
channels. Several types of channel have been defined in 
terms of the effect they have on those timesets. A 
discussion on these various types is beyond the scope of 
this paper and interested parties are directed to the work of 
Motus and Rodd [10]. Suffice to say that these channel 
types support synchronous communication – where the 
timesets of the producer-consumer pair are identical, 
sequential communication – where the consumer process’ 
timeset is generated by the producer process and truly 
asynchronous communication – where the two timesets are 
independent. 

Returning to the formal definitions, a channel (σij) can be 
considered as a mapping of the producer-process (p i) value 
range onto the consumer-process (p j) domain of definition, 
thus: 

σ ij i: ) val p  x T(p  x T(p )  proj  dom pi j val p ji
→  

An important feature of this mapping is the inclusion of the 
producer processes’ timeset. This provides the consumer 
process access to the history of the data generated by the 
producer – required for time-selectivity.  

It is then possible to define a channel function that 
describes the range of data generations that the consumer 
process requires. Thus, a channel function K(σij, t) defines 
for each t ∈ T(pj), a subset of T(p i) 

K t T(p T(pij i j( , ) ), ).σ ⊂ ∈  t  

Therefore, the consumer process pj, activated at t ∈ T(pj), 
only has access to the data generated by the producer 
process pi, whose computations were activated at 
t ∈ K(σij, t). [10] 

This seems unwieldy, but channel functions are, in fact, 
relatively simple to specify. Using relative backward time, 
the channel function becomes the interval between the 
oldest data generation required and the newest generation 
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required (where the present is 0, the previous generation is 
–1 and the next generation is +1.) 

Analysis 
The most powerful aspect of the Q-model, in terms of its 
application to real-time system specification, is the ability 
to perform temporal analysis of the system model. This 
analysis relies upon a set of parameters that must be 
defined, coupled with the above formal definitions for the 
processes and channels. 

Analysis can be performed in two stages: formally, by 
applying a comprehensive set of rules and informally, 
through simulation. 

Formal analysis 
There are three levels of analysis to the Q-model. The 
simplest is the checking of individual process 
specifications. Once all the necessary parameters, timesets 
and channel functions have been provided the second level 
of analysis can be performed.  

This is concerned with process-pair interactions – checking 
the consistency of any imposed time constraints and 
determining the achievable timing characteristics given the 
specified parameters and channel types. 

The final stage of analysis is concerned with process group 
behavior. It is here that information deadlocks (“circular” 
message-waiting conditions) are checked for in sequential 
chains and synchronous loops, message transfer paths are 
analyzed, and the time required for data to pass through 
each path is calculated to verify the time constraints 
imposed upon the designed system by the environment. 

Simulation 
In addition to the formal verification, informal analysis can 
be performed. This is desirable because the formal checks 
can only verify that the proposed model does not violate the 
limited number of rules regarding the non-contradiction of 
process parameters and correct interprocess 
communication, but does not provide any insight to 
whether the model will perform as intended in the initial 
specification. The informal analysis can do this, however, 
by allowing the designer to animate the model as a 
simulation scenario and view the results as a time-line 
diagram.  

This type of simulation provides the developer with a 
graphic representation of the dynamic operation of the 
model, showing when and how processes are activated and 
what data, and in particular what age of data, each process 
is consuming. The designer is then able to validate that the 
proposed system will behave as intended in the 
specification, at least temporally! 

4 MAPPING THE UML INTO Q-MODELS 
The central feature of the work presented here is that the 
user is not confronted with a new formal model of a 
system, thus avoiding the recurring problem of esoteric and 
intractable representations that software engineers avoid. 

To achieve this the comfortable, graphical models  
constructed in the UML must be translated into Q-models. 
The following sections will describe these translations, but 
at present these are themselves informal and the 
determination of formal translation rules is the current 
focus of the research. 

Use cases 
The UML is intended for use within a use-case driven 
development process. The use cases are, therefore, the first 
artifacts to be established. Initially these are abstract and 
high-level, but through iteration become detailed 
descriptions of interaction dialogues between the system 
and its environment. In real-time systems the temporal 
constraints are imposed by the environment. These can be 
expressed in the use cases as required response times of the 
system, and expected arrival rates of input data.  

In the Q-model and abstract process is created to represent 
the use case behavior, with the parameters serving as the 
process (use case) timeset. As subsequent diagrams in the 
UML design are developed the use case will come to 
represent the collaboration of several objects. As this 
happens, the abstract Q-model process becomes a 
community of collaborating processes, with each process 
belonging to only one of the objects (representing the 
object method). Analysis of the Q-model can be performed 
at any time (once the parameters are defined) to ensure that 
as the use case is elaborated, the original constraints are 
still met.  

The normal process of discovering the collaborating objects 
is preserved. That is, textual analysis, domain knowledge, 
preliminary study or business modeling resulting in classes 
and relationships as usual. 

Interaction diagrams  
In most texts on the UML, the use cases are expanded upon 
using sequence diagrams. Douglass [5] has shown how 
simple temporal parameters can be expressed on sequence 
diagrams. Typically these are maximum allowable response 
times and periods for iterative messages. By extending the 
syntax to support interval-based parameters it is possible to 
temporally describe every message. Those messages that 
are non-deterministic (i.e represent unknown causal 
relations) are given sufficiently large intervals.  

A Q-model process is created for each unique message call, 
as these represent invocations of object methods, and their 
timesets determined from the defined intervals for that 
message and any subsequent copies of that message – 
further invocations. At this time it is necessary to define an 
interval for each process which is started at each activation 
and during which additional activation requests are denied. 
This is termed the equivalence interval.  

The presence of a message in the interaction diagram 
indicates that a link between two objects must exist in the 
class, object and collaboration models. This link is 
represented in the Q-model as a channel between the 
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calling and called methods (processes). The channel type is 
not always known at this point since this relates to control 
flow rather than data flow, but as a general rule, if control 
is passed to the called method, the channel is sequential, 
whereas if both the calling and called methods are 
operating concurrently, the channel is synchronous. 

Statechart diagrams  
Statechart diagrams are used in the UML to model the 
internal state behavior of objects. Vain [15] demonstrated 
that the Q-model technique can be used to model state 
behavior in a similar way to Petri nets by considering Q-
model processes as states. This is inconsistent with their 
use in this example, however. Instead, it is necessary to 
consider the actions and activities shown in the statecharts. 
These should, of course, equate to the object methods for 
the class being described. Since these methods are the Q-
model processes discovered by mapping the method calls in 
the sequence diagrams, the additional information from the 
statecharts relates to the conditions or events that invoke 
those calls.  

It was stated previously that the activation of a process is 
defined by its timeset, and that a process’ timeset can be 
linked to that of another process via a synchronous or 
sequential channel or specified directly. The Q-model 
therefore describes external events as processes with a 
timeset representative of the event (the period of the event 
or a suitable distribution). Since internal events are raised 
by other objects within the model these are modeled by 
connecting those processes raising the event to the 
processes reacting to the event via channels. If the object 
(and object method) responsible for raising an internal 
event is not indicated on the current statechart all other 
statechart and activity diagrams are interrogated to reveal 
the source of the event – usually denoted by a «send» event 
or «signal». If it is not indicated on any diagram it 
represents a gap in the specification. 

Conditional branching must be modeled with an additional 
element, however, since the exe cution path is dependent on 
the condition. This element is the selector process. Selector 
processes behave exactly as common processes except that 
they allow the selection of either an input channel, an 
output channel, or both the input and output channels  of the 
process. That is, in the case of an output selector process, 
say, at each activation the output path is determined and 
data is only produced to that channel. This selection is done 
in a purely probabilistic manner (by defining the 
probability, or distribution, for each channel), but allows 
for the representation of such decision-making and 
simulation of the model. 

Activity diagrams  
The final diagram relevant to the construction of the Q-
models is the activity diagram. These are used in the UML 
to describe the flow of control between objects in a 
collaboration and, optionally, the creation, modification, 
use and destruction of other objects.  

Activity diagrams can be used to elaborate on use cases in 
place of sequence diagrams. In this case, activities translate 
to the Q-model processes as for statechart diagrams. 
Transitions in the activity diagram correspond to sequential 
channels unless concurrent activities are communicating in 
which case they are synchronous channels. Of course 
transitions are not a representation of data flow, only 
control flow, so the channels have no channel functions and 
are thus referred to as null channels. The data flow 
information is determined from subsequent interaction 
diagrams. As in statecharts, conditional branching is 
represented by selector processes. 

Filling in the gaps  
It is clear from the above discussion that the existing 
diagrams in the UML do not contain all of the information 
necessary to construct a formal model. For the most part, 
the structure of the Q-model can be translated directly as 
described. The missing elements are the time parameters, 
timesets, channel types and channel functions.  

The extensions to the UML notation proposed by Douglass 
[5], with the addition of interval-based parameters, provide 
most of the missing parameters and timeset information. 
Where that information is not available the user must 
provide it. At present this requires an understanding of the 
Q-model description, but in the future the user will 
complete a data form for each process and channel, where 
they must fill in the missing parameters (execution time 
intervals, data production rates, periods and data validity 
times, etc.) If these are not known, intervals can be 
estimated and their effect may be seen during analysis. This 
is also the case for channel types and functions; alternatives 
can be explored during Q-model analysis and chosen 
accordingly. 

5 CONCLUSIONS 
This paper has described a framework for the translation of 
UML behavior models into Q-models – a formal method 
for the specification, analysis and verification of real-time 
systems. This translation avoids the need for training in a 
new approach and the fear and skepticism often associated 
with formal specification methods. It must be stressed, 
however, that this approach does not allow for a lack of 
understanding of the systems under development. A 
thorough knowledge of the requirements and constraints of 
time-critical systems is fundamental.  

The primary advantage of this approach is that users can 
continue to develop software intensive systems using the 
familiar and comfortable graphical notation of the UML 
and then formally analyze and verify those models with a 
rigorous, proven method. Gaps within the specification 
become obvious and a thorough investigation of the 
requirements and constraints is forced by the need to 
specify temporal parameters throughout. Analysis can then 
identify possible problems in the specification such as 
deadlock or missed deadlines before costly implementation. 

The work presented here is only in the early stages, 
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however. Unresolved issues include the mapping of deeply 
nested statecharts where the timesets of repeatedly executed 
processes become extremely complex as the number of 
possible paths increases, and the resolution of conflicts 
between different UML diagrams describing the same 
behavior (such as a sequence diagram and an activity 
diagram of the same use case). At present both situations 
require decisions based upon an understanding of the 
resultant Q-models, but it is hoped that a possible remedy is 
the use of heuristics or design patterns which can be 
encapsulated within the translation rules. 
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