
DEVELOPMENT OF STOCK PLAYERS

THROUGH LEARNING CLASSIFIER

SYSTEM IN “REAL” MARKET

Gianmarco Sabbatini
Lorenzo Costantini

Matteo Mazza

May 3, 2019

Prof: Pietro Terna

1 Abstract

The goal of the work is to carry out an agent-based simulation of the stock
market trend, using agents that operate differently: the most of them will make
random decisions, while the others will be trained with a learning classifier
system (LCS). After that we will study if the strategy adopted by the agents
trained with LCS is better than the others.

2 Introduction

Most social systems involve complex interactions among many individuals. The
sum of the simple interaction among the agents cannot explain the behaviour of
the global system. For this reason, the traditional economy have only partially
succeeded in extracting general features from simplified human behaviour.
Finance is one of the field where traditional economy approach fail. In fact,
many of the foundations are in a state of confusion and new theories raise.
A way that is used to study these systems is the agent-based simulation. Using
sophisticated mathematics and computational tools is possible to find out some
macro features emerging from the interaction of individual strategies.
In this work we will resume what was thought by Arthur and Holland, at the
end of the 80s at the Santa Fe Institute (SFI). Their idea was to populate the
financial market of agents with different strategies. The winning ones are kept
and replicated while the weakest ones are discarded. In this way, new space for
new methods is created. The article to which we refer, however, is successive
and written by LeBaron([2]), one of the co-authors of Holland and Arthur.

1



What we propose to do in this work is to reproduce the SFI stock market with
the addition of the book. The book is a prospectus that collects the purchase
and sale proposals related to a specific instrument. The order book is constantly
updated on the basis of new orders placed and is divided into two parts: on the
left side ther are the purchase proposals, while on the right side there are the
sales orders. The proposals are arranged in ascending order, the transaction
takes place when the major element of the left side of the book has a value
greater than or equal to that of the lower element of the right side. In the
event that the previous requirement is satisfied, the price of the stock that is
exchanged is the once fixed by the agent who is selling.
As in the real exchange, where orders are canceled at the end of the day, the
book is also reset in the simulation after a certain number of cycles. Each book
is related to a single title. In the work the agents will act on a single title.
The training phase of the LCS algorithm is performed on data taken from a real
stock market. The training is carried out offline: the training phase is carried
out before the simulation starts.
Agents will have the opportunity to buy and sell the stock at any time, assuming
they have both money to buy and stocks to sell. Each day each agent acts one
time. Every transaction involves one stock. To change the volume exchanged
by a certain type of agent is possible to modify the number of agents of that
type.
In this work it has been studied the behaviour of a single stock.

3 Learning Classifier System

Learning Classifier Systems (LCS) are a model of ruled-based machine learning
that contains a genetic algorithm (discovery component) and a learning compo-
nent (supervised, unsupervised or reinforcing). These systems aim to identify a
set of rules that depends on the specific situation; the derived rules act collec-
tively in order to make predictions.
There are multiple implementations of the algorithm. In this work was chosen
Michigan-style with offline supervised learning. The name derives from the fact
that this type of algorithm was conceived by John Holland while working at
Ann Arbor University in Michigan.
The steps of the algorithm are shown below:

Enviroment: The environment is the source of data upon which an LCS learns.
Each training instance is assumed to include some number of features (market
data with which to make the forecast) and a single endpoint (action). For
Michigan-style systems, one instance from the environment is trained on each
learning cycle.

Rule/Classifier: A rule is a context dependent relationship between state
values and some prediction. Rules typically take the form of an IF {condition}
THEN {action}. The rule is only applicable when its condition is satisfied.

2



Given binary data LCS traditionally applies a ternary rule representation: rules
can include either a 0, 1, or # where the “don’t care” symbol (i.e. “#”) stands
for “wild card”, a way of generalizing the rule.
The classifier is the rule with the addition of associated parameters, some of
the most common are: quantity (number of rules equal to each other), match
count (number of times in which the rule was applied), correct count (number
of correct application of the rule), accuracy (ratio between correct count and
match count), fitness (parameter that influences the reproduction of the rule).

Matching: from the environment a rule is taken and compared with all the
rules in the population, where the comparison is made only on the conditions
and not on the action. The part of rules that overcome the match ends up in the
MatchSet. From this two subsets are generated, CorrectSet and IncorrectSet.
In the first one end up the rules that have the same end point of the rule coming
from the environment, the remaining end up in the second set.

Covering: if after the match phase, there are no elements in the CorrectSet,
the covering mechanism intervenes. This takes the rule from the environment,
randomly chooses the features to be copied into the new rule and replaces the
others with the #, reporting the unaltered action.

Parameter updates: the rule parameters of any rule are updated to reflect
the new experience gained from the current training instance. The rules of
CorrectSet will increase the correct count and so fitness and accuracy, vice
versa for IncorrectSet.

Subsuming: if we have two rules that have the same accuracy but a different
level of generality and moreover one is a specification of the other, the less
general is eliminated and the quantity of the more general one is increased.

Genetic algorithm: at this point to introduce new rules in the population, we
use a strongly elitist genetic algorithm that makes “reproduce” only the rules
with greater fitness.

Deletion: the population of the algorithm rules is limited. For this limit, the
rules with the lowest fitness are canceled.

Condensation: after the previous phases the redundant rules and those gen-
erated for a short time are canceled. This because they have not therefore been
subjected to a sufficient selection process. In this way a group of rules is ob-
tained with a smaller number that increases both the interpretability and the
performance during the decision phase.

Prediction: the status of the problem is presented to the algorithm as a vector
of features. In a first matching phase we compare the vector of the features with
those of the rules. A MatchSet is created with the rules applicable to the situ-
ation. To decide what action to take, look at the components of the MatchSet,
especially their end point. The agent will perform the action supported by the
most rules.

3



Figure 1: Schematic representation of the functioning of an LCS algorithm

3.1 Choice of rules

Our departure data can be taken from this different ways:

• take data from a market composed of agents acting randomly, making sure
there are rising and falling bubbles;

• take data from a real market;

• create the time series by ourselves with some particular features (this series
must not be periodic and it has to have bubbles).

In this work we have used the second option.
To create the environment, the following rules have been applied to the source
data:
In the Table 1, pi is the price of the stock at the tick i. T -period MA is the
moving average calculated with a period T using this equation:

T − period MA =
1

T

0∑
i=−T

pi (1)

voli is the volume at the tick i. The volume is an indicator of the liquidity
of a given financial asset. A considerable increase/decrease in the volume is
generally followed by a strong change in the price of the stock. So the volume is
an index of the increased/decreased interest of investors for the stock. volmedio
is the average of all the volumes of the market considered while devstd vol is
the standard deviation of the volumes. The eleventh bit is the action: if the

4



Bit Condition

1 pi > 5-period MA
2 pi > 10-period MA
3 pi / pi−2 > 1.02
4 pi / pi−2 < 1/1.02
5 10-period MAi - 10-period MAi−5 > 0
6 10-period MAi - 10-period MAi−5 < 0
7 pi - pi−10 > 0
8 pi - pi−5 > 0
9 voli - volmedio > devstd vol
10 volmedio - voli > devstd vol

Table 1: presentation of the rules

price at the present time is greater than 1.5% of the price in five days then the
agent sells a stock, vice versa buys. The agent passes if neither of these two
conditions is satisfied.

4 Preparing the data

To make our predictions we use the difference between the price of the title at
the current time, and the one five days later. The market trend depends on
the day of the week, because of the costs of the commissions, so we have to
make a comparison between the same days (for example the difference between
two monday). Our timeseries present the daily closing price of the stock. The
market, however is closed in some special days like Christmas or New Year’s day
and to make an automatic system of creating the environment is impossible. To
overcome this problem we have to adjust the data. With a short script we have
found the days left and added them artificially. The closing price of the these
days is the price of the previous day, beacause the best predictor of tomorrow is
today. Regarding the volume we have associate the avarage volume. In fact, a
large volume means lots of transactions that implies usually a sensible difference
in the price.

5 Model tests

At the beginning, before the implementation of the artificial market, the model
has been tested on the real time series to understand his behaviour and to
understand how the parameters work. Two test were made.
In the first the algorithm was trained on the whole dataset and then tested on
the same data. In the second the algorithm was trained only on the 70% of the
data and tested on the other 30%. The most important issue to understand was
to verify that the algorithm could recognize the stock’s price big variations. To

5



do this, we have create two counter. The once called “correct” was incremented
when the decision of the algorithm was ‘Buy’ or ‘Sell’ and matched with the
correct action. The other called “incorrect” was incremented when the decision
of the algorithm was ‘Buy’ and the right action was ‘Sell’ and vice versa. We
were not interested in the case in which it decided to pass even if the correct
action was to play in some way. This means that the important things in this
moment is not win a lot but not lose.
We can’t give precise results because of the stochastic part of the LCS’ training,
either in the covering and either in genetic algorithm. Generally in the the first
way to test the LCS the results were around 60% of correct actions, while in
the second way we obtained between 54% and 57%. Another things that stands
out from these tests and don’t surprise is that the algorithm works much better
on time series which have a unique or a few trends in the long period. Titles
which presents lot of variations are more difficult to be understood from the
LCS, because the component of noise is higher than the signal.

6 The Artificial Stock Market

6.1 The actors

All the agents that will act in our market present the same form. They’re object
with four principal attributes:

• Cash: represent the amount of money of our agent. It can be either
positive or negative number (if he hasn’t enough money to buy someone
else lend him money and he goes negative);

• Stock: represent the number of stocks owned buy the agent. It can be
either positive or negative number (there is someone other that gives him
stock to trade if he hasn’t);

• Gain: this quantity is calculated at the end of the program as the algebraic
sum of the cash and the number of stocks multiplied their value at the
end of the running. It is a resume of the behaviour of the agent.

• Id: is an identity number that identify the single agents and is important
because it connects the the agent to their offer in the book.

In addition there are also two important common methods:

• Action: with this method the agent decide what to do among the option
’Buy’, ’Sell’ or ’Pass’, with a logic that depends from its type;

• Price: with this method the agent decide the price at which buy or sell;

6



6.1.1 Random Agent

The Random agents are the ones which represent the larger part of the agents
of our market. They’re simple agents that decide to act randomly.
In their Action method they extract a random number between 0 and 1, and if
this number is minor than 0.45 they buy, if it is included in the range between
0.45 and 0.9 they sell otherwise they pass.
Their Price method take in input the closing price of the previous day. To this
one we add a number extracted from a gaussian distribution with average 0 and
as variance the 1% of the input price.
A stock market composed only from this type of agents take the form of a real
market even if is done by only noise and no signal. In the following picture we
can see the evolution of a stock price in the time driven by random agents.

Figure 2: Market in which act only 200 Random Agents

6.1.2 Arbitrajeur

Now we have a market that qualitatively goes like a real market but there’s no
signal below only the noise made by Random Agents. For this reason if the LCS
agent try to play in this market all its training will be useless because even if it
has understood something about the signal, this would be lost.
To avoid this problem a new agent was created: the arbitrajeur. This agent has
the task to “transport” the signal from the real stock market to the articial one.
To do that it has to know how the real market evolves.
In its Action method it takes in input the real price and the price of the artificial
market. It will buy if the first is higher than the second, and will sell in the
opposite case.
Its Price method works in a simple way. If the action is buy, it returns a
price that is the 0.1% bigger of the smallest price in the selling queue of the

7



book. Same reasoning when it has to sell. This because his role in the game is
fundamental and its action must be realized.

Figure 3: The orange curve is the simulated market and the blue one is the real
market. Here only five arbitrajeur acts among 200 Random Agents.

We can see that a few arbitrajeurs on the total number of agents guarantee a
trend of the artificial market very similar to the real one.

6.1.3 LCS Agent

This is the ”clever agent”, the one which we aspect will act in a better way then
the others.
First of all we have to split the times series in two parts. The first one will
contain the 70% of the data (train set) and the remaining data will compose the
second one (test set). Unlike the agents described above this one has a one more
method called Train. In this function the LCS agents is trained on the first part
of the data. The training is made using a library called XCS. This method takes
in input the train set and returns the model that will be used from these agent
to takes his decision. The model contains a list of rules with this form: the first
ten bits represents the status of the market and the last position there is the
action to do. Associated to the rules, the model has also some parameter: fitness
and numerosity. The training is performed immediately after the creation of an
agent of this type. So at the moment in which the simulation of the real market
begins, every LCS agents have their own model.
Like the other actors the decisions are taken in the function Action. This receives
in input the current status of the market coded in the same way as the condition
of the rules. At this point, only the rules that matches with the market status
are considered. The process of matching consists in comparing the bit of the
status with the corresponding one in the rule. After the matching process the
survived rules vote. Each remaining rule has a different action and to decide we

8



count how many rules there are for each action weighted with their numerosity
and fitness. The returned action will be the most voted.
The method Price of this agent works as the one in the arbitrejeur method.

6.1.4 The proportion of the agents

The proportion of the actors is very important in this kind of market. If the
number of arbitrajeur agents is too high then we are looking at the real market
and no at an artificial one. In fact as shown in figure 4 an excessive number of
arbitrajeur follow exactly the behaviour of the real market.

Figure 4: Market in which act only 200 Random Agents and 70 arbitrajeur

Considering that the training of LCS agent is done in a market in which it is
not present, also in the simulated market its action must be irrelevant. If the
number of the intelligent agents is relevant then their rules are no more “right”
because the market has been modified too much and is no more similar at the
real one. This concept is shown in figure 5 where the simulated market (orange
line) is far from the real market (blue line).

Figure 5: Market in which act only 200 Random Agents and 2 arbitrajeur and
20 LCS agents.

9



In conclusion, to obtain a fine simulated market we must have:

• big number of Random Agents;

• one arbitrajeur each 20 Random Agents;

• a few LCS Agents.

In our market the LCS agents, when they are more than one, is distributed
among the Random agents.

6.2 Calculate the gain

The gain is an attribute that is own by each type of agents. It represents the
performance of the agents in term of money. Since the mean gain of a random
agent is zero and the arbitrajeur’s gain is not relevant (because it is only a link
between the simulated market and the real one), the only gain we are interested
in is the one of the LCS agent. In this work this quantity has been calculated
in two different ways.
In the first way each time the agent buy or sell a stock his attribute cash is
decremented or incremented by the price of the action in that moment. In the
same time also the the attribute stock is modified: it is incremented by 1 every
time the agent buys a stock and decremented in case the agent sells. The final
gain is calculated using the following equation:

gain = cash + stock ∗ pf (2)

where pf is the final price of the stock at the end of the simulation. In this
case, the agent could accumulate stocks and settle accounts at the end of the
simulation.
In the second option the agent has to close the transaction after five days. This
means that if at a certain time t it decides to buy after five days it will sell the
same stock. The same is valid in the case in which the action at time t is sell,
after five days it has to close the transaction buying.
So the gain in case of at time t the action is ‘Sell’ the gain will be: gain =
pt − pt+5 else if the action is ‘Buy’ the gain will be: gain = pt+5 − pt.

7 Results

Consider a simulated stock market with 500 random agents, 8 arbitrajeur and
4 LCS with separate training.
We have tried this algorithm on the time series of the following companies:
Amazon, Toyota, Fiat, Volkswagen, Terna, Apple and Microsoft.
Looking at the gain calculated in the first way it’s positive and in average in
two years and a half it’s equal to the value of the action.
Considering this quantity as a proxy of the capabilities of the algorithm we can
conclude that it can learn a pattern followed by the time series.

10



If the LCS agent has to close the transaction after five days strictly, so using the
second way to calculate the gain, the results obtained are positive but closed to
zero so minor than when was calculated in the first way.

8 Especial results

In the end, the interesting thing was to understand if the algorithm could find
a pattern among different stocks. To do this, the model was trained on a
company’s time series and tested on another company’s time series.
The results are in some ways interesting. The algorithm works in a good way if
trained and tested on company’s of the same type, for example trained on Fiat
and tested on Toyota or trained on Apple and tested on Microsoft.
On the other hand the same is not true if trained and tested on two companies
of different sectors, for example trained on Toyota and tested on Amazon.
From what observed, we can conclude that similar company trend’s time series
have a common pattern below learned from LCS. Different company trend’s
time series are not regulated from the same pattern.
So we can conclude that the LCS algorithm is able to catch the pattern below
the trend of a stock but these are not general pattern applicable to every time
series.

11



References

[1] W Brian Arthur. Asset pricing under endogenous expectations in an artificial
stock market. In The economy as an evolving complex system II, pages 31–
60. CRC Press, 2018.

[2] Blake LeBaron. Building the santa fe artificial stock market. Physica A,
2002.

12


