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1 Introduction

1.1 How does it work?

The purpose of my work was to find a way to predict a possible forecast of a genetic diseases. 
To do this I used a model to recreate a population of three different kind of agents: healthy
agent,  carriers agent and sicks agent.  To simulate the spread of  the disease,  two different
agents were chosen (without any exception)to form a couple, and then bred to create a new
generation.
With the data of first and last population,  I  trained an Artificial  Neural Network (ANN) to
predict the diffusion.
The simulation was designed to observe 10 different kind of severity of disease, and to train
efficiently, with a large variety of data,  the ANN.
At the end there will be an ANN that, with four parameters (% of healthy, % of carriers,% of
sick, sick-treshold) will be able to predict the final % of healthy, carriers and sicks after 20
generations.

1.2 The generalization of the simulation model

The model used to simulate the 20 generations is an introductive work, that has to be taken
like  a  base,  from which starting  to  product  a  model  that  observe  a  specific  forecast  of  a
particular disease. Let’s see the hypothesis done in this generalized model.  

For example: it required that the considered disease is not mortal,  that the sick agent can be
able to mate normally, and also that the disease forecast, from the agents parents to the agents
sons, was made with a generalization of Mendelian’s idea,  thanks to the stochastic cross of the
DNA’s parents.
An other important generalization is about the sick-treshold, that define the health state of the
agents. The idea is to summarise every big and small facet that characterize the disease, and
convert all in a single value which representing the severity of the latter.
Naturally this required an important, and probably not negligible, generalization.
All  of  this  to  say that,  to  optimize  the use  of  the  ANN,  is  essential  choose a disease that
satisfied the hypothesis. 

1.3 Ready to react

The main goal of this work is to discover a possible dangerous impact of a genetic disease in a
population,  so  we  can plan  previously  the  best  strategy  to  vanquish the  disease,  both  in
Economic and Social terms.

Indeed, if a dangerous debilitating and easily transmitted disease comes out, the first concern
must  be  “which  negative  impact  will  be  in  a  population?”,”How  much  this  can  affect  the
mundane life?”.
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Put  simply:  focusing  on  the  individual,  would  be  put  at  risk  the  regular  daily  life(not
indifferent things in social terms) and in a global view, a society of sick people would not be
productive.
Predicting  the  danger,  the  react  can  focus  his  economic  and  social  forces  on  prevent  the
forecast of this particular disease.
There are many action that can be done: naturally finding a cure, but if this is not possible,
another react might be done by genetic manipulation through the artificial fertilization or by
birth control (obviously most influential in Social terms).

1.4 The combination of two languages to optimize the purpose

The work was made thanks to the use of two different programming languages: NetLogo and
Python.

NetLogo is a free, open-source multi-agent programmable modelling environment, so as to
introduce the stochastic behavior(fundamental for the issue).
Python is an interpreted high-level programming language for general-purpose programming.
The first is  appropriate to simulate the agents interact and observe the changes in real time.
The second allow to do complicate calculations that NetLogo would not be able to do.
Thanks to the combination of these two programming language it was possible to get data
from an agent based simulation, in NetLogo, and use these to train a ANN written in Python.
The code will now be explained focusing the attention in a first moment on the NetLogo part,
then on the Python part to use the ANN and finally to the combination of both.

2 The NetLogo code

We write the code to create a random population of sick, carrier and healthy and take data of
these 3 values and also of the sick-treshold(value choosen randomly between 10 and 20), then
bred them together to product the new generation, it is repeated for 20 generations(ticks),
and after that we take again data of the 3 values of sick, carrier and healthy of population.
After that the code clear all and repeat for 100 times, and take at the end two list, one of 404
values( initial % of sick, carrier, healthy and sick-treshold, for 101 times)  and the other of 303
(final % of sick, carrier and healthy).
I repeat all to get 22 list of these to extend the data. 
Let’s see how work the button on the interface.

2.1 Start

First of all, we have to press the button Start to clear-all and set the variable “restart” to 0.
This variable is use to count the list of value. It will be incremented until 10.

1. to start
2.        clear-all
3.        set restart 0
4. end

2.2 Data



4

Immediately after the Start button, we are going to press the Data button.
This button set the two list (X and Y),that will contain the initial and final data, like empty list
to be filled; then resized the world, on the y axis, to represent, in a appropriate way, the 3 DNA
of a healthy, sick and carrier, choosing randomly, in every generation.
The button set also the value “again” to 0.This variable is use to count the components of the
10 list.

1. to data
2.   set dataX []
3.   set dataY []
4.   resize-world 0 32 0 4
5.   set again 0
6. end

2.3 Setup

Now we can press the Setup button to create the population.
We can choose the size-population with the slider in the interface.
Every agents(turtles) had a particular variable: “bits”.
This variable is fundamental, it represent the DNA of the agents. It shall assign, to every single
agent, a string with the dimension of the size, on the X axis, of the world (32 components).
Every component of the string is chosen randomly between 0 or 1.
After that, the Setup button sets the agents hide, because we want to represent in the world
the DNA, not the agents.
Then the variable “sick-treshold” is set to a random value between 10 and 20.This is a key
variable to set the health state of the agent.
The Setup button has also different command to “clear” (clear-turtles, patches, drawing, all-
plots, output, and reset-ticks) because every times, after 20 generations(ticks),it is recall to
restart the simulation.

1. to setup
2.   clear-turtles
3.   clear-patches
4.   clear-drawing
5.   clear-all-plots
6.   clear-output
7.   reset-ticks
8.   create-turtles size-population [
9.     set bits n-values world-width [one-of [0 1] ]
10.    hide-turtle  ]
11.   set sick-treshold (10 + random 11)
12. end

2.4 Go
 
When the environment is set, the simulation can starts and we can press the Go button.
The code of Go button is complicate.
It starts with the command diagnosi
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2.4.1 Diagnosi:

This command analyses the bits of every agents.
If the sum of all the 1 present in the string is minor or equal to the sick-treshold, the agent
changes breed in sicks.
If the sum of all the 1 present in the string is greater than sick-treeshold but minor or equal
to this one plus 5, the agent changes breed in carrier.
If the sum of all the 1 present in the string is greater than  sick-treshold  plus 5, the agent
changes breed in healthy.
Now, if we are in the first generation (ticks = 0), the code add the value of the % of healthy,
carrier and sick to the X list set on the setup command.
After  that,  another  value  of  sick-treshold,  that  will  be  the  same  until  the  end  of  the  20
generations(ticks), is chosen randomly. Then this value is also add to the X list, infact it will be
the sick-treshold baseline of this cycle.
In the end is called the update-display button.

1. to diagnosi
2.   ask turtles[
3.     ifelse length (remove 0 bits) <= sick-treshold
4.     [
5.       set breed sicks
6.         ]
7.     [
8.       ifelse length (remove 0 bits) <= sick-treshold + 5
9.       [
10.       set breed carrier
11.        ]
12.         [
13.       set breed healthy
14.         ]
15.   ]
16.   ]
17.   if ticks = 0 [
18.     let q1 count healthy * 100 * (1 / size-population )
19.     let q2 count carrier * 100 * (1 / size-population )
20.     let q3 count sicks * 100 * (1 / size-population )
21.     set dataX lput q1 dataX
22.     set dataX lput q2 dataX
23.     set dataX lput q3 dataX
24.     set sick-treeshold (10 + random 11)
25.     set dataX lput sick-treshold dataX
26.   ]
27.   update-display
28.   
29. end

2.4.1.2 Update-display
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This command is used to represent, on the world, the DNA’s of a sick, carrier and healthy agent
for each generation. It chooses, randomly, one agent of three different breeds, and analyses the
bits of them, changes the color of the patches( black or white) along the X axis. For example: if
the second component of the bits of the sick agent is 1, the second patch along the X axis, in
the Y value of the axis designed to represent the sicks’DNA, will be colored white, otherwise
black.

1. to update-display
2.   let v one-of sicks
3.   if v != nobody[
4.   ask patches with [pycor = 0] [
5.     ifelse item pxcor ([bits] of v) = 1
6.       [ set pcolor white ]
7.       [ set pcolor black ]
8.   ]]
9.
10.     let w one-of carrier
11.     if w != nobody[
12.     ask patches with [pycor = 2]
13.     [
14.     ifelse item pxcor ([bits] of w) = 1
15.       [ set pcolor white ]
16.       [ set pcolor black ]
17.   ]]
18.
19.   let u one-of healthy
20.   if u != nobody[
21.   ask patches with [pycor = 4]
22.     [
23.     ifelse item pxcor ([bits] of u) = 1
24.       [ set pcolor white ]
25.       [ set pcolor black ]
26.   ]]
27.
28. end

Healthy
Carrier
Sicks

Fig1: Representation of DNA of the 3 different breeds of the agents

Once the command  diagnosi  and  update-display are executed, the button  go  updates the
graph which is represents the counts of the sicks, healthy and carrier for each generation.
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Fig2:  The  variation  of  the  population(sick%,carrier%,healthy%)  in  function  of  the
generations

Than the button  go  asks to all agents to change breed in  oldgens (old-generation) and to
executes the command new-generation

2.4.2 New-generation

This command ask to the agents to choose another partner,  from the other agents,  to mix
randomly their DNA, to create a new-generation and then die.
The command to make the DNA’s cross is crossover.

2.4.2.1 Crossover

This command takes the two  bits  of the agents parents, divides randomly the string in two
parts, equal from a parent to another, and creates two new bits for the two new agents that
will be obtained.
The first  new-bits will be given from the first part of the bits of the first agent and the second
of the second agent.
The second new-bits will be given from the first part of the bits of the second agent and the
second part of the first agent.

1. to-report crossover [bits1 bits2]
2.   let split-point 1 + random (length bits1 - 1)
3.   report list (sentence (sublist bits1 0 split-point) 
4.                         (sublist bits2 split-point length bits2))
5.               (sentence (sublist bits2 0 split-point)
6.                         (sublist bits1 split-point length bits1))
7. end

Now the agents sons can be create.
Through the command  hatch the two agents sons are created,the first  with the first  new
bits(item 0) from crossover command  , and the second with second new bits ( item 1). And
then they are set with a newgens (new-generation) breed.
After that the agents parent die.

1. to new-generation
2.   let parent2  one-of other oldgens in-radius 1000
3.   let child-bits crossover ([bits] of self) ([bits] of parent2)
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4.    hatch 1
5.     [  set bits item 0 child-bits
6.        set breed newgens
7.     ]
8.   ask parent2 [ hatch 1
9.     [  set bits item 1 child-bits
10.        set breed newgens
11.         ]
12.   ]
13.   ask parent2 [die]
14.   die
15. end

Then the button go execute the command tick.
When the button go is executing, if the ticks (generations) are equals to 20, the code add 1 to the
value of variable again and add to the list Y the last three value % of healthy, carrier and sick. If the
variable  again is  minor  or  equal  to  100  the  command  setup and  go are  re-executed,  or  else
respectively one of ten different lists of dataX and dataY, chosen respect to the value of variable
restart, are set equals to the X and Y, respectively. Then the value of restart is incremented of 1.
At the end, if the value of  restart is minor or equal to 11, then the command data setup and go
will be executed, or else the code will stop.
This is the entire code of go

1. to go
2.   if ticks = 20 [
3.     set again again + 1
4.     diagnosi   
5.     let z1 count healthy * 100 * (1 / size-population )
6.     let z2 count carrier * 100 * (1 / size-population )
7.     let z3 count sicks * 100 * (1 / size-population )
8.     set dataY lput z1 dataY
9.     set dataY lput z2 dataY
10.     set dataY lput z3 dataY
11.         ifelse again <= 100
12.     [
13.       setup
14.       go]
15.     [
16.       if restart = 0
17.      [ set X  dataX
18.        set Y dataY
19.         ]
20.       if restart = 1
21.      [ set X1 dataX
22.        set Y1 dataY
23.        ]
24.       if restart = 2
25.      [ set X2 dataX
26.        set Y2 dataY
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27.        ]
28.       if restart = 3
29.      [ set X3 dataX
30.         set Y3 dataY
31.       ]
32.       if restart = 4
33.      [ set X4 dataX
34.         set Y4 dataY
35.       ]
36.       if ricomincia = 5
37.      [ set X5 dataX
38.         set Y5 dataY
39.       ]
40.       if restart = 6
41.      [ set X6 dataX
42.         set Y6 dataY
43.       ]
44.       if restart = 7
45.      [ set X7 dataX
46.         set Y7 dataY
47.       ]
48.       if restart = 8
49.      [ set X8 dataX
50.         set Y8 dataY
51.       ]
52.       if restart = 9
53.      [ set X9 dataX
54.         set Y9 dataY
55.      ]
56.       if restart = 10
57.      [ set X10 dataX
58.        set Y10 dataY
59.      ]
60.      set restart restart + 1
61.       type "restart=" print restart
62.      ifelse restart <= 11
63.       [ data
64.         setup
65.       go]
66.       [stop]
67. ]
68.   ]
69.   diagnosi
70.   set-current-plot "Graph population healthy, carrier, sicks"
71.   set-current-plot-pen "healthy"
72.   plot count (healthy)
73.   set-current-plot-pen "carrier"
74.   plot count (carrier)
75.   set-current-plot-pen "sicks"
76.   plot count (sicks)
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77.
78.   ask turtles[
79.     set breed oldgens]
80.
81.   ask oldgens[new-generation]
82.   tick
83.
84. end

3 The Python code

It is the moment to start speaking about the Python code write (in emacs-script) to use the ANN. 
As I said before, the use of Python is justified by his computing power.
In fact Python is really comfortable to work with matrix and array in n-dimension.
Before explaining the code, let’s do a little introduction to the Artificial Neural Network that I used.

3.1 Artificial Neural Network

An ANN is based on a collection of connected units or nodes called artificial neurons(a simplified
version  of  biological  neurons  in  an  animal  brain).  Each  connection  (a  simplified  version  of  a
synapse) between artificial neurons can transmit a signal from one to another. The artificial neuron
that receives the signal can process it and then send it to artificial neurons connected to it. 

In common ANN implementations, the signal at a connection between artificial neurons is a real
number, and the output of each artificial neuron is calculated by a non-linear function of the sum
of its inputs: Activation function. For my ANN i used the sigmoid function

F(A)=
1

1+e−A

The main reason why we use sigmoid function is because it exists between (0 to 1). Therefore, it is
especially  used  for  models  where  we  have  to  predict  the  probability as  an  output.  Since
probability of anything exists only between the range of 0 and 1, sigmoid is the right choice.

 Artificial neurons and connections typically have a weight that adjusts as learning proceeds. The
weight increases or decreases the strength of the signal at a connection. Artificial neurons may have
a threshold such that only if the aggregate signal crosses that threshold the signal is sent. Typically,
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artificial  neurons  are  organized  in  layers.  Different  layers  may  perform  different  kinds  of
transformations  on  their  inputs.  Signals  travel  from the  first  (input),  to  the  last  (output)  layer,
possibly after traversing the layers multiple times. 

For my code I used an ANN feedforward with only a single hidden layer. 

To train my ANN I used a supervised learning (i.e I give data input with which the ANN calculate
an output, which can compare and correct with a data output,that we know yet, given).

The way to implement the weights was the  Backpropagation algorithm.  The backpropagation
algorithm looks  for  the  minimum of  the  error function(  function  made  from the  comparison
between the expected values and the effective values) in weight space using the method of gradient
descent.

Gradient descent is a first-order iterative optimization algorithm for finding the minimum of a
function. To find a local minimum of a function using gradient descent, one takes steps proportional
to the negative of the gradient (or of the approximate gradient) of the function at the current point. 

The "backwards" part of the name Backpropagation stems from the fact that calculation of the
gradient proceeds backwards through the network, with the gradient of the final layer of weights
being calculated first and the gradient of the first layer of weights being calculated last.  Partial
computations of the gradient from one layer are reused in the computation of the gradient for the
previous layer. This backwards flow of the error information allows for efficient computation of the
gradient at each layer versus the naive approach of calculating the gradient of each layer separately.

3.2 Prepare the data for the training.

The best way to train a supervised ANN is to divide the Dataset in two part: trainset and test set.
This was the first step to write my code, preparing the Data to train the neural net and then to test it.

Dealing with eleven list of 404 values in input and eleven list of 303 values in output, I covert this
list in  four matrices. Two for the  training :  a matrix in input of 880 rows and 4 columns (%
healthy,% carrier,%sick,sick-treshold) and a matrix for the output  of 880 rows and 3 columns(%
healthy,% carrier,%sick). The other two for the test: a matrix in input of 231 rows and 4 colomns(%
healthy,% carrier,%sick,sick-treshold) and a matrix for the output  of 231 rows and 3 columns(%
healthy,% carrier,%sick).

These are the functions, present in the emacs file named DataMatrix.py, used to prepare the Data
for the test and the train ( only for the input, for the output is the same). 

1. def
trainset_X(dataX,dataX1,dataX2,dataX3,dataX4,dataX5,dataX6,dataX7,dataX8,dataX9,d
ataX10):  

2.     X = numpy.matrix(dataX.reshape(101,4))

3.     X1 = numpy.matrix(dataX1.reshape(101,4))

4.     X2 = numpy.matrix(dataX2.reshape(101,4))
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5.     X3 = numpy.matrix(dataX3.reshape(101,4))

6.     X4 = numpy.matrix(dataX4.reshape(101,4))

7.     X5 = numpy.matrix(dataX5.reshape(101,4))

8.     X6 = numpy.matrix(dataX6.reshape(101,4))

9.     X7 = numpy.matrix(dataX7.reshape(101,4))

10.     X8 = numpy.matrix(dataX8.reshape(101,4))

11.     X9 = numpy.matrix(dataX9.reshape(101,4))

12.     X10= numpy.matrix(dataX10.reshape(101,4))

13.     #split training set from test set

14.     train_X = X[:80,:4]

15.     train_X1 = X1[:80,:4]

16.     train_X2 = X2[:80,:4]

17.     train_X3 = X3[:80,:4]

18.     train_X4 = X4[:80,:4]

19.     train_X5 = X5[:80,:4]

20.     train_X6 = X6[:80,:4]

21.     train_X7 = X7[:80,:4]

22.     train_X8 = X8[:80,:4]

23.     train_X9 = X9[:80,:4]

24.     train_X10 = X10[:80,:4]

25.     FinalX  =
numpy.concatenate((train_X,train_X1,train_X2,train_X3,train_X4,train_X5,train_X6,trai
n_X7,train_X8,train_X9,train_X10))

26.     return FinalX

27. def
testset_X(dataX,dataX1,dataX2,dataX3,dataX4,dataX5,dataX6,dataX7,dataX8,dataX9,dat
aX10):  

28.     X = numpy.matrix(dataX.reshape(101,4))

29.     X1 = numpy.matrix(dataX1.reshape(101,4))

30.     X2 = numpy.matrix(dataX2.reshape(101,4))

31.     X3 = numpy.matrix(dataX3.reshape(101,4))
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32.     X4 = numpy.matrix(dataX4.reshape(101,4))

33.     X5 = numpy.matrix(dataX5.reshape(101,4))

34.     X6 = numpy.matrix(dataX6.reshape(101,4))

35.     X7 = numpy.matrix(dataX7.reshape(101,4))

36.     X8 = numpy.matrix(dataX8.reshape(101,4))

37.     X9 = numpy.matrix(dataX9.reshape(101,4))

38.     X10= numpy.matrix(dataX10.reshape(101,4))

39.

40.     test_X = X[81:,:4]

41.     test_X1 = X1[81:,:4]

42.     test_X2 = X2[81:,:4]

43.     test_X3 = X3[81:,:4]

44.     test_X4 = X4[81:,:4]

45.     test_X5 = X5[81:,:4]

46.     test_X6 = X6[81:,:4]

47.     test_X7 = X7[81:,:4]

48.     test_X8 = X8[81:,:4]

49.     test_X9 = X9[81:,:4]

50.     test_X10 = X10[81:,:4]

51.     FinalTestX  =
numpy.concatenate(( test_X,test_X1,test_X2,test_X3,test_X4,test_X5,test_X6,test_X7,tes
t_X8,test_X9,test_X10))

52. return FinalTestX

3.3 Training and testing

Let’s see some part of the code, that I used to train the ANN, to understand    the theory explained
before.

The ANN has 3 layers: the first is for the input (4 nodes) the second is the hidden layer (5 nodes)
and the last is for the output(3 nodes)

                Inputs layer      hidden layer            output layer
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These are  two parts  of the code of the training function  train_neural  present  in  the emacs file
Train_Test_NeuralNet.py

1.         for k in range(nh ): # nh represents the 5 nodes of the hidden layer

2.             A = 0

3.             for i in range(nh – 2):# nh-2 represents the 3 nodes in the input
layer 

# A is the sum of the outputs of the hidden layer, and wh is a matrix that
represents the weights of the inputs layer nodes to the hidden layer nodes 

4.                 A = A + wh[k,i]*X[s,i]/100# here it sums the %

5.             A = A + wh[k,nh – 2]*B #here it sums the sick-treshold 

6.             A = A + wh[k,nh – 1]#here it sums the treshold of the layer

7.             H[k] = 1/(1 + numpy.exp(-A))#this is the sigmoid function, the
activation function that will be used to the output layer

8.         for j in range (output_y):#outputy is the numer of the output nodes

9.             A = 0

10.             for k in range(nh):# nh represents the 5 nodes of the hidden layer

# A is the sum of the outputs of the output layer, and wy is a matrix that
represents the weights of the hidden layer nodes to the outputs layer nodes 

11.                 A = A + wy[j,k]*H[k]

12.             A = A + wy[j,nh]

13.             Y[j] = 1/(1 + numpy.exp(-A))

14. Output_Matrix[s,j]  = Y[j]#the result  of  the outputs  became a rows in  a
Output matrix
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Let’s see how work the back propagation and gradient descent:

       #Error Output Layer

1.         for j in range (output_y):

2.             Err =(0.5)*(D[s,j]/100 – Y[j])**2# Main squared error of ouput
values and expected values

3.             DeltaY[j] = Err*Y[j]*(1 – Y[j]) #derivative of the sigmoid

     #Error hidden layer

#Thanks to the Backpropagation, we can find the error of the hidden layer
outputs starting from the error of the output layer outputs 

4.         for k in range(nh):

5.             Err = 0

6.             for j in range(output_y):

7.                 Err = Err + DeltaY[j]*wy[j,k]

8.             DeltaH[k] = Err*H[k]*(1 - H[k])

#modify weights of output layer

9.         for j in range(output_y):

10.             for k in range(nh):

11.                 c[j,k] = wy[j,k] 

#Here start the gradient descent, the steps rate to find the minimum is Eps

12.                 wy[j,k] = wy[j,k] + Eps*DeltaY[j]*H[k] + m*d[j,k] #this last
value is the Momentum(will be explain later)

13.                 d[j,k] = c[j,k] - wy[j,k]

14.             c[j,nh] = wy[j,nh ]

15.             wy[j,nh] = wy[j,nh] + Eps*DeltaY[j] + m*d[j,k]

16.             d[j,nh] = c[j,nh] - wy[j,nh] 

#modify weights hidden layer

17.         for k in range(input_x-1):

18.             for i in range(nh - 2):

19.                 a[k,i] = wh[k,i]

20.                 wh[k,i] = wh[k,i] + Eps*DeltaH[k]*X[s,i]/100 + m*b[k,i]

21.                 b[k,i] = a[k,i] -wh[k,i] 
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22.             a[k,nh-2] = wh[k,nh-2]

23.             wh[k,nh-2]=wh[k,nh-2] +Eps*DeltaH[k]*B + m*b[k,nh-2]

24.             a[k,nh-1] = wh[k,nh-1]

25.             wh[k,nh-1] = wh[k,nh-1] + Eps*DeltaH[k] + m*b[k,nh-1]

26. b[k,nh-1] = a[k,nh-1] - wh[k,nh-1]

In neural networks, we use gradient descent optimization algorithm to minimize the error function
to reach a global minimum. However in real cases the error surface is more complex, may comprise
of  several  local  minimum.  In this  case,  you can  easily  get  stuck  in  a  local  minimum and the
algorithm may think you reached the global minimum leading to sub-optimal results. To avoid this
situation, we use a momentum term in the objective function, which is a value between 0 and 1 that
increases the size of the steps taken towards the minimum by trying to jump from a local minimum.
If the momentum term is  large then the learning rate  should be kept smaller.  A large value of
momentum also  means  that  the  convergence  will  happen fast.  But  if  both  the  momentum and
learning rate are kept at large values, then you might skip the minimum with a huge step. A small
value of momentum cannot reliably avoid local minimum, and can also slow down the training of
the system. Momentum also helps in smoothing out the variations, if the gradient keeps changing
direction. 

To control the train, the code shows the  maximum error between the outputs and the expected
outputs, after every cycle of train. When the error is quite small,we can stop the train and start the
test. This function is always present in the emacs file Train_Test_NeuralNet.py

1. def ErrTrain(FinalY,Output_matrix):

2.     ErrMaxs = FinalY/100 - Output_matrix

3.     M = 0.

4.     for i in range(ErrMaxs.shape[0]):

5.         for j in range(ErrMaxs.shape[1]):

6.             if abs(ErrMaxs[i,j]) > M:

7.                 M = abs(ErrMaxs[i,j])

8. return M

The  code  of  the  test  function  is  equal  to  the  train  function  but  without  the  code  part  of  the
implementation of the weights. And also this present an error function to control the reliability of
the ANN.

3.4 Using the ANN

Once that the train and the test parts are over, we can use the ANN ,with the weights update, with
new values of which we don’t know the outputs. The code of the ANN is in the emacs-file ANN.py
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and it is written to take 4 values (%healthy,% carrier, %sick, sick-treshold) in input, and gives 3
values in output ( %healthy,% carrier, %sick) after 20 generations.

4 NetLogo extension to Python 

To operate the ANN, write  in Python, in  the NetLogo code,  it  was necessary downloading the
extension from the github link:
https://github.com/qiemem/PythonExtension

Here there is also some information about how it works and some demos as example.

If  you  want  some  easy  instruction  to  download  it,  you  can  find  at  page  19  of  :
http://terna.to.it/econophysics18/cmap/Notes&Links17-18.pages.pdf

Thanks to this extension I could used my ANN in NetLogo. Let’s see how this works.

We can see in the right part of the NetLogo interface code, there are other buttons. These are used

for the Python part of the code. The first button to press is data_for_the_neural_net.

Fig3: Interface

The first part of my NetLogo code, in which I use Python’s extension, is this , and it prepares the
data for the train.

1. to data_for_the_neural_net 

2.    py:setup py:python3 #This is the command that open the python3 session

# to interact with Python session i have to use the command py:run and py:set

3.   (py:run

4.     "import numpy"

5.     "import matplotlib"

https://github.com/qiemem/PythonExtension
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6.     "import DataMatrix") #this last is my Python script, in which there are many function  to
prepare the Data for the train

7.   py:set "dataX" X

8.   py:set "dataX1" X1

9.   py:set "dataX2" X2

10.   py:set "dataX3" X3

11.   py:set "dataX4" X4

12.   py:set "dataX5" X5

13.   py:set "dataX6" X6

14.   py:set "dataX7" X7

15.   py:set "dataX8" X8

16.   py:set "dataX9" X9

17.   py:set "dataX10" X10

18.   py:set "dataY" Y

19.   py:set "dataY1" Y1

20.   py:set "dataY2" Y2

21.   py:set "dataY3" Y3

22.   py:set "dataY4" Y4

23.   py:set "dataY5" Y5

24.   py:set "dataY6" Y6

25.   py:set "dataY7" Y7

26.   py:set "dataY8" Y8

27.   py:set "dataY9" Y9

28.   py:set "dataY10" Y10

29.   py:set "wh" wh

30.   py:set "wy" wy

  #As  a  library,  to  use  the  function  on  my  Python  script  ,  I  have  to  call  the  function  using
<namescript>.function

31.   (py:run

32.     "FinalX  =  DataMatrix.trainset_X(  numpy.array(dataX),  numpy.array(dataX1),
numpy.array(dataX2),  numpy.array(dataX3),  numpy.array(dataX4)  ,  numpy.array(dataX5),
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numpy.array(dataX6),  numpy.array(dataX7),  numpy.array(dataX8),  numpy.array(dataX9),
numpy.array(dataX10))"

33.     "FinalY  =
DataMatrix.trainset_Y(  numpy.array(dataY),numpy.array(dataY1),numpy.array(dataY2),nu
mpy.array(dataY3),numpy.array(dataY4),numpy.array(dataY5),numpy.array(dataY6),numpy
.array(dataY7),numpy.array(dataY8),numpy.array(dataY9),numpy.array(dataY10))"

34.     "FinalTestX  =  DataMatrix.testset_X(  numpy.array(dataX),  numpy.array(dataX1),
numpy.array(dataX2),  numpy.array(dataX3),  numpy.array(dataX4)  ,  numpy.array(dataX5),
numpy.array(dataX6),  numpy.array(dataX7),  numpy.array(dataX8),  numpy.array(dataX9),
numpy.array(dataX10))"

35.     "FinalTestY  =
DataMatrix.testset_Y(  numpy.array(dataY),numpy.array(dataY1),numpy.array(dataY2),num
py.array(dataY3),numpy.array(dataY4),numpy.array(dataY5),numpy.array(dataY6),numpy.a
rray(dataY7),numpy.array(dataY8),numpy.array(dataY9),numpy.array(dataY10))"

36.     "wh = numpy.matrix(numpy.random.random((5,5)).reshape(5,5))"

37.     "wy = numpy.matrix(numpy.random.random((3,6)).reshape(3,6))"

38.     "wh = wh/10"

39.     "wy = wy/10"

40.   )

41. end

The second button to press is train_neural_net, this calls the two function train_neural and ErrTrain
of the Python script Train_Test_NeuralNet.py and this is the code:

1. to train_neural_net

2.    (py:run

3.     "import numpy"

4.     "import matplotlib"

5.     "import Train_Test_NeuralNet")
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6.    let M 0

7.    py:set "Output_Matrix" Output_Matrix

8.    py:set "M" M

9.    py:set "Eps" Eps

10.   (py:run

11.     "Output_Matrix = Train_Test_NeuralNet.train_neural(FinalX,FinalY,wh,wy,Eps) "

12.     "M = Train_Test_NeuralNet.ErrTrain(FinalY,Output_Matrix)")

13.   type " the error in sample is =" show py:runresult "M"

14. end

This button is set to show the max error of the ANN every cycle. When the error is quite small, we
can stop and press the button test_neural_net ,which uses the function test_neural and ErrTest of the
Python script Train_Test_NeuralNet.py

1. to test_neural_net

2.   let N 100

3.   py:set "Output_Matrix_T" Output_Matrix_T

4.   py:set "N" N

5.   (py:run

6.     "import numpy"

7.     "import matplotlib"

8.     "Output_Matrix_T = Train_Test_NeuralNet.test_neural (FinalTestX,wh,wy)"

9.     "N = Train_Test_NeuralNet.ErrTest (FinalTestY,Output_Matrix_T)")

10.   type " The error out of sample is =" show py:runresult "N"

11. end

When the ANN is ready, we can finally choose 4 data in inputs (% healthy,% carrier,%sick,sick-
treshold) and put them in the right boxes, press this time the button neural_net and see the outputs
of the ANN.

The function used by the button is ANN of the Python script ANN.py and this is the code:

1. to neural_net

2.   let Output 1

3.   let Xp []
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4.   set Xp lput  %healthy Xp

5.   set Xp lput %healthy_carriers Xp

6.   set Xp lput %sick Xp

7.   let strh treeshold  ; range of sick-treeshold is 1 to 12

8.   py:set "Xp" Xp

9.   py:set "Output" Output

10.   py:set "strh" strh

11.

12.   (py:run

13.     "import numpy"

14.     "import matplotlib"

15.     "import ANN"

16.     "Output =  ANN.ANN(numpy.array(Xp),wh,wy,strh)"

17.     )

18.   show py:runresult "Output"

19. end

5 Results

Before using the ANN we have to be sure that the train ended well. This means that the error in
sample (that will appear during the train in the command center) and the error out of sample (that
will appear during the test in the command center) must be around a values of 0,15.
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To see the result of the ANN, I stopped the train with an error in sample of 0,1552 and an error out
of  sample  of  0,1720.  I  analyzed  the  output  of  the  ANN  ,by  choosing  3  inputs  of
population(%healthy,%carrier,%sick), with particular focus on how it changed for different sick-
treeshold. Let’s see the results

Input
(%healthy,
%carrier,
%sicks)

Output ANN
Sick-treshold
       9

Output ANN
Sick-treshold
        12

Output ANN
Sick-treshold
       15

Output ANN
Sick-treshold
        18

 Output ANN
Sick-treshold
         20

(33,34,33) (78,26,0) (31,56,9) (9,55,40) (1,20,79) (0,11,89)

(66,33,1) (79,25,0) (32,55,9) (9,55,38) (1,20,79) (0,11,89)

(1,33,66) (78,27,0) (30,56,11) (8,55,39) (1,21,78) (0,11,89)

(10,80,10) (77,27,0) (31,56,10) (8,56,39) (1,20,78) (1,11,88)

(10,10,80) (77,27,0) (30,56,10) (8,55,40) (1,19,78) (0,11,89)

(80,10,10) (78,26,0) (31,55,11) (8,56,39) (1,20,79) (0,11,88)

First of all we can observe that the sum of the output is not always 100, this is justified by the fact
that the output of the neural net has an error. 

What the output of the ANN tells to us is clear by the fact that, for different inputs, the output of
the ANN is almost the same for the same sick-treshold. For the ANN, if the danger of the disease
has this particular value, almost regardless of the initial population, the forecast will be it.  

The Data given to the ANN for the train are about different diseases: from a common disease, with
a  normal  forecast  power(  minimum  sick-treshold),  to  a dangerous  disease(maximum  sick-
treshold),  with a high forecast power. So we can observe,  by the output of the ANN, that it  is
necessary paying particular attention to the diseases falling within the sick-treeshold higher or
equals of 15, because they have a stronger forecast.

Succeeding in approximating the dangerous of the forecast of a disease in a single value like the
sick-treeshold, thanks to an  ANN like this we could  catalog diseases potentially dangerous, in
terms of  forecast,  so that  focusing the  economic forces on a  risk control  plan  to  prevent the
spread.  

5.1 And now?

Independently by the results, there is another aim that this article wants to show. 
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It shows the potential  of the use of a simulation model, to create a dataset, to train a machine
(supervised) learning algorithm. Usually,  for the supervised learning, are used real (big) dataset
formed over the years, i.e. about subjects that are already known. But what it can do with a dataset
about a subject partially unknown (small dataset)?

The use of a simulation model could represent a dataset of a disease known, but most important can
be used to create a (theoretical) dataset about a new dangerous disease.    


